National Missile Defense

National Missile Defense
Start eines Prototyps des Ground-Based Interceptors auf einer PLV-Rakete
Prototyp des „Exoatmospheric Kill Vehicle“

Die National Missile Defense (kurz NMD; dt.: nationale Raketenabwehr) bzw. der US-Raketenschild ist ein zur Regierungszeit von US-Präsident George W. Bush angestrengtes Rüstungsprojekt der Vereinigten Staaten von Amerika. Es gilt als Nachfolger der Strategic Defense Initiative (SDI).

Zweck der NMD soll es sein, anfliegende Interkontinentalraketen mit satellitengestützter Überwachung zu erkennen und entweder bereits nahe der Abschussrampen, auf ihrer Bahn im Weltall oder während des Sinkfluges in der Erdatmosphäre mittels Raketen oder Lasern zu zerstören. Auf diese Weise soll ein Verteidigungsschutzschild für die Vereinigten Staaten realisiert werden. Als Gefahrenherde gelten die Waffensysteme von Ländern wie Iran und Nordkorea.

Federführend verantwortlich für die Entwicklung und Umsetzung der NMD ist die Missile Defense Agency (MDA; etwa: Amt für Raketenverteidigung), eine Abteilung des US-amerikanischen Verteidigungsministeriums.

In Bushs Plänen für einen Raketenschutzschild spielten zunächst Standorte in Polen und Tschechien eine zentrale Rolle. Im September 2009 kündigte Präsident Barack Obama jedoch einen Richtungswechsel an. Seegestützte Abfangraketen sollen die für Polen vorgesehenen Systeme ersetzen, eine geplante Radarstation in Tschechien wird nicht in Betrieb gehen.[1]

Inhaltsverzeichnis

Das Gesetz

Beschlossen wurde das Gesetz zur Nationalen Raketenverteidigung noch in der Regierungszeit von Bill Clinton. Darin heißt es:

„Es ist die Politik der Vereinigten Staaten, so rasch wie technologisch möglich eine effektive Nationale Raketenverteidigung zu stationieren, die in der Lage ist, das Gebiet der Vereinigten Staaten gegen begrenzte ballistische Raketenangriffe (ob nun unbeabsichtigt, ungenehmigt oder vorsätzlich) zu verteidigen und deren Finanzierung unter dem Vorbehalt der jährlichen Zuteilungsbewilligung und der jährlichen Bewilligung von Mitteln für die Nationale Raketenverteidigung steht.“

– National Missile Defense Act von 1999[2]

Historie

Weitere Vorläufer der NMD neben Ronald Reagans Strategic Defense Initiative waren u. a. seit den späten 50er-Jahren des 20. Jahrhunderts das Nike-Zeus-Programm (1961 eingestellt), das Project Defender, das Sentinel-Programm und – damit zusammenhängend – das Konzept des Ballistic Missile Boost Intercept (BAMBI; jeweils ab 1963; eingestellt 1968) sowie – ab 1967 – das Safeguard-Programm. Alle diese Vorhaben erwiesen sich aus politischen und technischen Gründen als problematisch und scheiterten letztendlich.

Das SDI-Projekt wird jedoch mit verantwortlich gemacht für die Auflösung der Sowjetunion, die einem neuen Wettrüsten im Weltraum wirtschaftlich nicht mehr gewachsen war.

Die erneute Aufrüstung seitens der USA wird unter anderem von China und Russland seit Jahren scharf kritisiert. Sie warnen vor einem neuen globalen Wettrüsten mit Weltraumtechnologie.[3]

Aufgaben und Verfahren des Systems

Zunächst muss ein Raketenabwehrsystem anfliegende Raketen erkennen und unterscheiden können. Mittels Frühwarnradarstationen am Boden und mit Hilfe von Infrarotkameras in geostationären Satelliten erkennt das System – zumindest in der Theorie – automatisch startende Raketen an ihrer Antriebswärme (also dem Schweif bzw. Feuerstrahl). Die Infrarotkameras der Frühwarnsatelliten können die Raketen nach dem Durchqueren der unteren Atmosphärenschichten detektieren und anhand der Form und der Hitzeverteilung im Feuerstrahl den Raketentyp bestimmen – so jedenfalls die Vorstellung der Initiatoren der NMD.

Zu diesem Zeitpunkt (in der boost phase) ist bei Raketentypen, die sowohl für die Raumfahrt als auch als ICBMs verwendet werden, allerdings bislang keine Unterscheidung zwischen einem zivilen Raumfahrteinsatz oder einer militärischen Aggression möglich.

Am 24. April 2007 wurde das Near Field Infrared Experiment (NFIRE) [4] mit einer Minotaur-1-Trägerrakete von der Wallops Flight Facility auf eine Umlaufbahn in 552 km Höhe gebracht. Der ursprünglich schon für 2005 geplante Start war zuvor zweimal verschoben worden. NFIRE soll die Detektion von Raketentypen bzw. ihres Einsatzzweckes nunmehr entscheidend verbessern. Raketen, die in friedlicher Absicht eingesetzt werden, sollen so schon in der Startphase aussortiert werden können.

Im nächsten Schritt wird die Bahn der Rakete beobachtet und vorausberechnet. In der Zusammenschau der – in einem äußerst kurzen Zeitfenster – gewonnenen Daten muss dann abgeschätzt werden, ob es sich beim jeweiligen Raketenstart um einen Angriff oder zum Beispiel nur um eine Trägerrakete für die Raumfahrt handelt.

Die Vorausberechnung der Flugbahn ist relativ einfach, solange es sich bei dem Geschoss um eines mit strikt ballistischer Flugbahn wie etwa bei den meisten Interkontinentalraketen (ICBMs) handelt. Diese Raketen steigen nach dem Brennschluss in einer rechnerisch nachvollziehbaren Bahn (mit gewissen Abweichungen, verursacht u. a. durch diverse atmosphärische Einflüsse) bis in den Weltraum hinauf, um dort einen oder mehrere Gefechtsköpfe freizusetzen. Üblicherweise werden bei MIRVs auch noch Gefechtskopfattrappen freigesetzt, um Abwehrsysteme abzulenken und zu verwirren.

Allerdings hatte die Sowjetunion bereits in den 1960er Jahren ein System zur Einsatzreife entwickelt, das schon damals eine Vorausschau des mutmaßlichen Ziels bis kurz vor dem Einschlag unmöglich machte (vgl. FOBS).

Zur Zerstörung der atomaren Gefechtsköpfe wird in ihrer Flugbahn ein vom Boden gestartetes oder auch von Satelliten freigesetztes „Kill Vehicle“ (wie bei NFIRE vorgesehen, das die Detektion von feindlichen Flugkörpern mit deren Abwehr in einem Satelliten verbinden soll) auf Kollisionskurs gebracht – in teilweise nahezu entgegengesetzter Flugrichtung. Es ist mit IR- und Bildsensoren ausgestattet, um die Gefechtsköpfe zu erkennen. Im Idealfall besitzt diese Vernichtungsvorrichtung eine gewisse Lenkfähigkeit. Geplant sind auch Killersatelliten, die zu selbstständigen Annäherungsoperationen fähig sind („Autonomous Proximity Operations“). Ein solches „Kill Vehicle“ soll dann einen Gefechtskopf bei seiner Bahn im All in der Regel durch bloße Kollision – also durch kinetische Energie – bei über 7 km/s (also 25.200 km/h) zerstören.

Hintergründe

Politischer Hintergrund

Als Nachfolgeprogramm der 1983 von Ronald Reagan ins Leben gerufenen Strategic Defense Initiative wird die NMD im Auftrag des amerikanischen Präsidenten George W. Bush mit Hochdruck weiterentwickelt. Dabei soll es nach offiziellen Angaben in erster Linie nicht als Verteidigung gegen mögliche Attacken der konkurrierenden Weltmächte Russland und China dienen, sondern vielmehr vor Terroristen und so genannten Schurkenstaaten wie dem Iran und Nordkorea schützen. Zusätzlich soll das System auch vor einem versehentlichen Abschuss atomarer Raketen durch Russland schützen, dem man offenbar auf Grund einer unterstellten mangelnden Stabilität seiner inneren Ordnung zutraut, seine Streitkräfte könnten der Kontrolle der Regierung entgleiten. Die Fertigstellung von NMD hätte allerdings gegen den noch mit der UdSSR abgeschlossenen ABM-Vertrag von 1972 verstoßen, den die USA deshalb am 13. Dezember 2001 einseitig aufgekündigt haben. Die Kündigung wurde sechs Monate später, am 13. Juni 2002, wirksam.

Technische Kritik

Die Verteidigung gegen eine ganze Flotte angreifender Raketen – und somit der vielbeschworene „Schutzschild“ – gilt jedoch nach Angaben verschiedener Experten bis heute (Stand: 2006) als technisch nicht möglich. Demnach können derzeit höchstens 20 Gefechtsköpfe auf einmal abgewehrt werden, was zwei bis drei angreifenden Raketen mit sieben bis acht MIRVs entspräche. Dieses Problem soll in Zukunft das Multiple Kill Vehicle-System lösen.

Gegen terroristische Angriffe ist der Schutz nach Einschätzung von Kritikern des NMD-Konzepts ebenfalls unvollkommen: Eine terroristische Organisation, wenn sie denn in den Besitz einer Kernwaffe gelangte, würde diese eher auf anderen Wegen gegen die Vereinigten Staaten anwenden, etwa ins Land geschmuggelt (z. B. als „Kofferbombe“), in einem LKW o. ä. untergebracht und/oder per Schiff in den Hafen einer großen Stadt transportiert. Sollte darüber hinaus ein „Kill-Vehicle“ einen atomaren Sprengkopf treffen und vernichten, würde sich der größte Teil seiner Trümmer inklusive des radioaktiven spaltbaren Materials weiter auf der ursprünglichen Bahn bewegen und über dem Ziel in die Erdatmosphäre eintreten z.T. verglühen aber dennoch das Gebiet kontaminieren. Es würde aber keine Atomexplosion stattfinden.

Taktische Grundlagen eines Raketenabwehrsystems

Die Zielsetzung bei der Systemarchitektur der National Missile Defense (Grafik des DoD)

Grundlage einer Raketenabwehr ist die schnelle Reaktion auf anfliegende Raketen/Gefechtsköpfe. Innerhalb kürzester Zeit müssen startende Raketen als anfliegende ICBMs erkannt und deren Flugbahnen bestimmt werden.

Die Bekämpfung kann in drei möglichen Phasen des Angriffs stattfinden:

  1. Startphase,
  2. ballistischer, gfs. suborbitaler Flug außerhalb der Atmosphäre,
  3. Wiedereintritt in die Atmosphäre/Zielanflug.

Startphase

Künstlerische Darstellung: Eine Boeing AL-1 beschießt eine startende ballistische Rakete mit einem Laser

In der Startphase bietet eine aufsteigende ICBM im Prinzip ein relativ großes, sich auf einer vorausberechenbaren Bahn bewegendes Ziel, welches theoretisch einfach erfasst und bekämpft werden könnte. Ebenso könnten (im Prinzip) auf diese Weise mehrere Sprengköpfe (MIRVs) gleichzeitig durch die Zerstörung einer Rakete ausgeschaltet werden.

Die aktive Aufstiegsphase dauert ca. fünf bis zehn Minuten; bei moderneren Langstreckenraketen ist sie noch erheblich kürzer. In dieser Zeit müssen die Starts entdeckt und bewertet werden. Es muss entschieden werden, ob ein Angriff vorliegt und welche Ziele voraussichtlich angegriffen werden. Außerdem müssten in dieser kurzen Zeit die politischen und militärischen Entscheidungen zur Reaktion auf einen möglichen Angriff getroffen werden, was die Gefahr von Fehlschlüssen erheblich erhöht.

Durch das NMD-Konzept ist eine Bekämpfung in dieser Phase bislang nicht möglich, wenngleich auch hierzu intensiv geforscht wird. In Zukunft sollen für Abfangmanöver in der Startphase vornehmlich luftgestützte Laser (Airborne Laser, ABL) eingesetzt werden, da hier für den Einsatz jedweder materieller Geschosse die Zeit in aller Regel einfach zu knapp wäre (es sei denn, die Abwehrwaffe befände sich in unmittelbarer Nähe der startenden Rakete). Vom ABL erhofft man sich, Raketen in der Startphase innerhalb von Sekunden vernichten zu können [5].

Ende September 2006 wurde angekündigt, dass 2007 eine Boeing-747, genannt Big Crow (deutsch: Große Krähe), mit einem Lasersystem zur Raketenabwehr ausgestattet werden soll; Meldungen zufolge sind die ersten Tests des Lasersystems unter Luftkampfbedingungen für 2009 geplant.

Für Kritiker sind Laserwaffen dieser Art allerdings nicht nur zu teuer, sondern oberdrein auch überflüssig, da sie mit geringem Aufwand wirkungslos gemacht werden könnten: Man müsse die Raketen dazu einfach nur mit einer verspiegelten Ummantelung versehen, die einen Großteil der gerichteten Energie ablenke. Bisher sollen die USA für das Lasersystem zur Raketenabwehr bereits 3,5 Milliarden US-Dollar aufgewendet haben [6]. → Hauptartikel: Directed Energy Weapon; vgl. Tactical High Energy Laser

Ballistischer suborbitaler Freiflug außerhalb der Atmosphäre

Während des ballistischen Flugs werden die Sprengköpfe ausgesetzt. Diese steuern daraufhin auf ihre Ziele zu. Sollten MIRVs und Täuschkörper eingesetzt werden, vervielfachen sich dabei die zu bekämpfenden Objekte. Die Sprengköpfe stellen kleine, sich rasch und unabhängig bewegende Ziele dar. Jeder Sprengkopf müsste einzeln erfasst, verfolgt und bekämpft werden, was eine äußerst umfangreiche Dislozierung von Abwehrmitteln erforderte.

Der Vorteil einer Bekämpfung in dieser Phase wäre die verlängerte Reaktionszeit, um den Angriff zu bewerten und Prioritäten für die Verteidigung festzulegen.

Beim NMD-Programm soll diese Phase vorrangig zur Bekämpfung anfliegender Gefechtsköpfe genutzt werden.

Wiedereintritt in die Atmosphäre/Zielanflug

Der Wiedereintritt in die Atmosphäre bietet die längste Reaktionszeit: je nach Flugbahn bis zu 45 Minuten nach dem Start der zu bekämpfenden Rakete. Es ist am ehesten möglich, betroffene Ziele und Flugbahnen zu bestimmen, um den Abfangvorgang zu koordinieren – jedenfalls bei ballistischen Raketen. Ebenso können Attrappen besser ausgeschlossen werden, falls diese beim Eintritt in die Atmosphäre verglühen sollten.

Beim Wiedereintritt sind allerdings aktive Ausweichmanöver der Gefechtsköpfe möglich, so z. B. ein Manövrieren im hohen Überschallbereich in der oberen Atmosphäre, etwa durch MARV.

Das NMD-Programm deckt nur einen Teil aller Angriffsphasen ab. Es stellt praktisch einen Kompromiss zwischen maximaler Reaktionszeit und möglichst einfacher Bekämpfung dar. Am problematischsten ist dabei, Verfahren und Techniken für eine schnelle Evaluierung und Entscheidung zu entwickeln, da bei einem Angriff 20 bis maximal 35 Minuten zwischen Start und Einschlag zur Verfügung stehen.

Die Testbilanz der NMD bis Dezember 2008

Nach einer Mitteilung der Missile Defense Agency hat eine bodengestützte, von der Vandenberg Air Force Base in Kalifornien gestartete Rakete Ende September 2007 erfolgreich ein Zielprojektil über dem Pazifik abgefangen, das vom Kodiak Launch Complex in Alaska abgefeuert worden war. Einem Sprecher der MDA zufolge erfasste das kurz zuvor aufgerüstete Frühwarnradar der Beale Air Force Base in Kalifornien das „angreifende“ Geschoss unmittelbar nach dem Start. Die Demonstration dieser Fähigkeit war dem US-Raketenabwehramt zufolge das Anliegen des Tests, der der zwölfte dieser Art seit 1999 war. Vier davon waren Fehlschläge; ein Test im Mai 2007, als eine Abfangrakete nicht abhob, wurde zum „Nicht-Test“ erklärt. Jeder dieser Versuche kostet rund 100 Millionen Dollar. [7] Am 5. Dezember 2008 gab es einen weiteren Test, welcher das Abfangen eines auf Kodiak Island (Alaska) gestarteten Zieles durch einen GBI der Vandenberg Air Force Base beinhaltete. Laut der amerikanischen Luftwaffe wurden alle gesteckten Ziele des Tests erfolgreich absolviert.[8]

Stationierungsorte

Das von den USA unter George W. Bush ursprünglich geplante europäische Raketenabwehrprogramm

Ground Based Interceptors (GBIs) sind seit 2004 als initiale Verteidigungskapazität in Alaska und Kalifornien stationiert. In Fort Greely (Alaska) stehen derzeit 20 GBIs im Dienst [9], auf der Vandenberg Air Force Base (Kalifornien) vier weitere[10]. Weitere zehn Raketen sollten ursprünglich in Redzikowo bei Słupsk (Polen) stationiert werden[11] und ein X-Band Radar in Brdy (Tschechische Republik)[12].

Überarbeitung der NMD-Strategie durch die Regierung Obama

Am 17. September 2009 kündigte US-Präsident Barack Obama an, vorläufig auf die Stützpunkte in Polen und Tschechien zu verzichten.[13] Am 20. September 2009 meldete der Londoner „Guardian“ zudem, Obama wolle auch die bereits zu seinem Regierungsantritt angekündigte umfassende Revision der US-Nukleardoktrin verstärkt in Angriff nehmen.[14]

Der russische Ministerpräsident Wladimir Putin lobte den Verzicht des US-Präsidenten auf das bisherige US-Raketenabwehrprojekt in Mitteleuropa als „mutigen Schritt“, forderte aber weitergehende Schritte wie zum Beispiel die Aufhebung der Handelsschranken zwischen Russland und den USA. Barack Obama wies Bezichtigungen zurück, russischer Druck habe zu seiner Maßnahme geführt: „Die Russen treffen keine Entscheidung über das, was unsere Haltung in Verteidigungsfragen ist.“ Wenn es ein „Nebenprodukt“ sei, dass „sich die Russen weniger paranoid“ fühlten, sei das „eine Dreingabe“ [bonus], so Obama im US-Fernsehsender CBS.[15] Der ehemalige polnische Ministerpräsident Aleksander Kwasniewski meinte, natürlich könne „man Obamas Entscheidung als Triumph der Russen betrachten.“ Es sei jedoch „keine Überraschung, dass die Amerikaner ihre Pläne geändert haben. Es war schon während der Wahlkampagne Obamas die Rede davon, dass die Bedrohungssituation, die technische Machbarkeit und die Kosten des Projektes überprüft werden müssen.“ Kwasniewski teilte jedoch die Sorge des ehemaligen tschechischen Premiers Mirek Topolanek, dass „die ganze Region für Washington an Gewicht verliere“.[16] [17] [18] Im Gegensatz zu den teilweise euphorischen Reaktionen[19] [20] bei Medien wie Regierungen darauf gab sich der russische Militärexperte Leonid Iwaschow skeptisch: „Die Position der USA in Bezug auf die Raketenabwehr in Europa hat sich nicht geändert“, zitierte ihn die RIA Nowosti. Was die Amerikaner als Zugeständnis bezeichneten, „ist in der Tat wieder eine Lüge“.[21]

Künftig wollen sich die Vereinigten Staaten vornehmlich auf erprobte land- und seegestützte Kurz- und Mittelstreckenraketen verlassen, nachdem die US-Regierung laut eigenem Bekunden zu einer geänderten Einschätzung der iranischen Langstreckenkapazitäten und -fähigkeiten gelangt war. Nach den Worten des US-Verteidigungsministers Robert Gates sollen daher nunmehr bis 2015 eine erhebliche Anzahl bodengestützter SM-3-Abfangraketen in Süd- und Mitteleuropa stationiert werden und damit weit mehr als die vordem geplanten zehn ausschließlich in Polen. Der neue Plan soll nach bisherigem Kenntnisstand in vier Phasen bis zum Jahr 2020 umgesetzt werden.[22]

Dem russischen Präsidenten Dmitri Medwedew zufolge muss der Raketenschutzschild einen weltumspannenden Charakter haben statt von einzelnen Staaten isoliert aufgebaut zu werden. „Es handelt sich um globale Fragen“, erklärte Medwedew in einem CNN-Interview und verwies u.a. auf die Probleme im Nahen Osten sowie auf der Korea-Halbinsel. „Deshalb muss das Schutzsystem von globaler Dimension sein statt aus einer geringen Anzahl von Raketen zu bestehen, die nur unser Territorium erreichen können, ohne andere Gebiete abzudecken. Ich hoffe, dass unsere amerikanischen Partner dies erhört haben.“ Medwedew gab sich optimistisch, dass Moskau und Washington noch bis zum Jahreswechsel 2009/2010 einen neuen Vertrag über den Abbau der strategischen Nuklearwaffen (START) vereinbaren können. Gleichzeitig wandte er sich erneute gegen eine beschleunigte Einbindung jener Staaten in die NATO, die dazu noch nicht bereit seien, und schlug der Allianz vor, gemeinsame Institutionen zu entwickeln.[23]

Irans Oberster Rechtsgelehrter Ali Chamene'i verwarf am 20. September 2009 die Absichten der Regierung Obama: „Unter seinem früheren Präsidenten scheute Amerika keine Mühe sowohl gegen die muslimische Welt als auch gegen den Iran“, so das iranische Staatsoberhaupt. Auch die gegenwärtige Regierung folge trotz „scheinbar freundlicher Worte und Botschaften“ der gleichen „anti-islamischen und anti-iranischen Politik der Vergangenheit“. Die westlichen Besorgnisse mit Blick auf das Nuklearprogramm des Iran seien „bloß ein Lügenmärchen der Vereinigten Staaten“.[24]

In den USA sprachen sich zwei Senatoren (ein Republikaner und ein Demokrat) und ein ehemaliger General der US-Luftwaffe erneut nachdrücklich für eine harte Haltung gegenüber Teheran aus, die letztendlich auch eine militärische Option umfassen müsse.[25]

Am 19. November 2010 legte sich die NATO in ihrem neuen Strategischen Konzept auf den Bau des Schildes fest und bekräftigte den Wunsch nach einer Zusammenarbeit mit Russland in dem Gebiet.

Sensoren und Waffensysteme

Überblick über das Ballistic Missile Defense System (BMDS) der USA (Darstellung der Missile Defense Agency (MDA), 2010)
PAVE PAWS Radarstation bei der Beale Air Force Base in Kalifornien, USA, unter anderem zur Erfassung von Starts von Submarine Launched Ballistic Missiles im Pazifik
Sensoren
Bezeichnung Stationierung Ortungstechnik Anmerkungen
Defense Support Program Weltraum (GEO) Infrarot Endgültig letzter Start im November 2007
STSS Weltraum (LEO) Infrarot Geplanter Doppelstart Ende 2009
SBIRS-GEO Weltraum (GEO) Infrarot Geplanter Start Ende 2009
SBIRS-HEO Weltraum (HEO) Infrarot
AN/FPS-108 Cobra Dane Boden, fest Radar 1 Station aktiv
PAVE PAWS Boden, fest Radar 3 Stationen aktiv
BMEWS Boden, fest Radar 3 Stationen aktiv
AN/TPY-2 Boden, mobil Radar Meist Teil von THAAD
AN/TPS-59 Boden, mobil Radar
Sea-Based X-Band Radar See Radar
AN/SPY-1 See Radar
Waffensysteme
Bezeichnung Stationierung Einsatz gegen Lenkung Anmerkungen
Ground-Based Interceptor (GBI) Boden, fest IRBM bis ICBM Infrarot
Terminal High Altitude Area Defense (THAAD) Boden, mobil SRBM Radar + Infrarot
MIM-104 Patriot Boden, mobil SRBM bis MRBM Radar Gefechtserprobt
Kinetic Energy Interceptor Boden, mobil SRBM bis ICBM Radar
Arrow Boden, mobil SRBM bis MRBM Radar Einsatz nur durch Israel,
angebunden an NMD-Sensoren
SM-3 See SRBM bis IRBM Radar + Infrarot
NT-SBT See SRBM Radar
Boeing YAL-1 Luft SRBM bis TBM Infrarot
NCADE Luft SRBM Infrarot

Auswirkungen

Das Sea-based X-band Radar (SBX), das weltgrößte X-Band-Radar, hier während Modernisierungsarbeiten in Pearl Harbor im Januar 2006. Es soll ab 2007 bei Adak Island (einer Aleuten-Insel bei Alaska) stationiert werden und dem NMD-Raketenabwehrsystem dienen

Das National Missile Defense Projekt könnte zu einer erneuten Aufrüstung der Atommächte führen. So kündigte das russische Militär bereits neue Langstreckenraketen an, die über drei in der freien Flugphase lenkbare Sprengköpfe sowie über zusätzliche Attrappen verfügen sollen, womit sie die bisherigen Konzepte der NMD, wie oben erwähnt, weitestgehend nutzlos machen würden. Dabei ist allerdings zu beachten, dass Russland seit längerem plant, seine SS-18 und SS-19 Interkontinentalraketen zu ersetzen. Die Tatsache, dass dessen ungeachtet gleichwohl eine geringe Anzahl anfliegender Raketen bzw. Sprengköpfe abgewehrt werden können, würde das Wettrüsten voraussichtlich zusätzlich beschleunigen. Um eine glaubwürdige Abschreckung aufrechtzuerhalten, wäre zum Beispiel China gezwungen, sein Atomwaffenarsenal aufzustocken sowie eine verlässliche Zweitschlagfähigkeit seiner U-Bootflotte zu erreichen [26]. Davon könnten sich wiederum Pakistan und Indien gefährdet fühlen und ihrerseits ihre Arsenale vergrößern und modernisieren. „Chinas bescheidener Ausbau seiner nuklearen Raketenstreitkräfte wird dazu betrieben, um es in die Lage zu versetzen, gegenwärtige und künftige Raketenverteidigungssysteme der USA überwinden zu können. Eine dieser Technologien wären Mehrfach-Gefechtsköpfe, um die Raketenabwehr zu überfordern“, hielt der US-Militärexperte Rick Fisher dazu 2005 fest [27].

Der Verzicht der Obama-Regierung auf die Stationierung von Raketenabwehrsystemen bei Stolp in Hinterpommern und in Tschechien, die sich nach dem Empfinden der russischen Regierung in erster Linie gegen Russland richtete, hat wesentlich mit dazu beigetragen, dass Obama am 9. Oktober 2009 der Friedensnobelpreis verliehen wurde.

Zitate

„Wir - Zitat - 'stellen' die Raketenabwehr nicht 'zurück'. Wir verwirklichen die Raketenabwehr rascher, als es die Bush-Regierung plante. Und wir stellen ein umfangreicheres System auf.“

US-Außenministerin Hillary Rodham Clinton am 18. September 2009 in einer Rede vor der Brookings Institution, Mitschrift

Siehe auch

Literatur

  • Bernd W. Kubbig: Wissen als Machtfaktor im Kalten Krieg. Naturwissenschaftler und die Raketenabwehr der USA. Campus Verlag, November 2004. – ISBN 3-593-37601-6
  • T. Bielefeld, Götz Neuneck: Raketenabwehr und ABM-Vertrag. Agenda Verlag, 2004. – ISBN 3-89688-117-5
  • M. Elaine Bunn: Strategic Forum 209 – Deploying Missile Defense: Major Operational Challenges. NDU Press, August 2004 (National Defense University, Institute for National Strategic Studies – PDF-Download, 649 kB: [1])
  • Jäger, Thomas/Dylla, Daria W. (2007): „Ballistic Missile Defense und polnische Sicherheitsinteressen. Eine Analyse der Diskussion über die Stationierung der US-Raketenbasis auf polnischem Territorium“, in: Thomas Jäger/Daria W. Dylla: Deutschland und Polen. Die Europäische und internationale Politik. VS-Verlag, 2008, ISBN 978-3-531-15933-1.
  • Dylla, Daria W. (2007): US-Raketenabwehrbasis und polnische Sicherheitsinteressen. In: Europäische Sicherheit, 7, 20-22. – PDF
  • Enrico Fels (2008): Will the Eagle strangle the Dragon? As Assessment of the U.S. Challenges towards China’s Nuclear Deterrence , Trends East Asia Studie Nr. 20 (Februar 2008).
  • James M. Lindsay, Michael E. O’Hanlon: Defending America, Updated: The Case for Limited National Missile Defense. Brookings Institution Press, Oktober 2002. – ISBN 0-8157-0633-2
  • Richard Butler: Fatal Choice: Nuclear Weapons and the Illusion of Missile Defense. Westview Press Inc., USA, April 2002. – ISBN 0-8133-3980-4
  • Craig R. Eisendrath, Gerald E. Marsh, Melvin A. Goodmann: The Phantom Defense: America’s Pursuit of the Star Wars Illusion. Greenwood Press, August 2001. – ISBN 0-275-97183-X
  • Martin Senn: „It is purely ludicrous and everybody knows it”? Ballistic Missile Defense als strategische Herausforderung für Russland. In: Raketenabwehrforschung International, HSFK, Bulletin No 57 – Sommer 2007 (Online: [2] – PDF, 11 S.)
  • Keir A. Lieber and Daryl G. Press: The Rise of U.S. Nuclear Primacy, „Foreign Affairs“ Jg. 85, Nr. 2, S. 42–54, März/April 2006 – Online: [3]
  • Nathan, J.; Tien, C.: The „China Threat“. National Missile Defense and American public opinion. In: Defense and Security Analysis, Volume 19, Nr. 1, März 2003, pp. 35-54(20)
  • Oprach, Marc: Dimitri Medwedew spielt auf Zeit – Russland und die US-Raketenabwehr. In: Russlandanalysen, Nr.167, S.10-11. – PDF

Weblinks

Einzelnachweise

  1. Stephen Kaufman: Obama Announces New Plan to Defend Europe from Iranian Missiles 17. September 2009
  2. National Missile Defense Act of 1999
  3. Telepolis: „China warnt vor Aufrüstung im Weltall“, 15. Februar 2001
  4. Near Field Infrared Experiment – missile phenomenology data collection satellite (Datenblatt v. General Dynamics, PDF)
  5. Image-Video des Directed Energy Directorate, AFRL, Kirtland Airbase, 2006 – 9:09 Min., 19,1 MB
  6. Meldung von RIA Nowosti
  7. U.S. conducts successful missile defense test (Xinhua, 29. September 2007)
  8. Vandenberg Air Force Base Pressemitteilung 5. Dezember 2008
  9. Globalsecurity.org: Initial Defensive Operations Capability (IDOC)
  10. Globalsecurity.org: Ft. Greely
  11. Globalsecurity.org: Redzikowo, Poland
  12. Globalsecurity.org: Brdy, Czech Republic
  13. USA verzichten auf Raketenschild in Ostmitteleuropa (Neue Zürcher Zeitung, 17. September 2009)
  14. Barack Obama ready to slash US nuclear arsenal – Pentagon told to map out radical cuts as president prepares to chair UN talks („The Guardian“, 20. September 2009)
  15. Obama rejects Russia missile link (BBC, 20. September 2009)
  16. Aus für Atomschild: Kwasniewski beruhigt die Polen (Spiegel Online, 20. September 2009)
  17. Marc Champion/Peter Spiegel: U.S. Missile U-Turn Roils Allies („Wall Street Journal“, 18. September 2009)
  18. Thomas Vieregge und Knut Kohn: Raketenabwehr: Obama erwischt Freund und Feind auf falschem Fuß („Die Presse“, 18. September 2009)
  19. Ralph Sina, WDR-Hörfunkstudio Washington: Das Ende des Raketenabwehrtheaters (nicht mehr online verfügbar) (Tagesschau.de, 17. September 2009)
  20. Paul Reynolds: US missile rethink a huge shift (BBC, 17. September 2009)
  21. Russischer Experte hält Obamas neue Raketenabwehrstrategie für Mogelpackung (RIA Nowosti, 18. September 2009)
  22. Obamas neuer Raketenabwehrplan hat vier Phasen – Plan läuft bis 2020 (APA/dpa/„Der Standard“, 18. September 2009)
  23. Medwedew wirbt für globales Raketenabwehrsystem (RIA Nowosti, 20. September 2001)
  24. Iranian leader decries Obama's missile defense plan (CNN, 20. September 2009)
  25. Daniel R. Coats, Charles S. Robb and Charles F. Wald: Last Chance for Iran („Washington Post“, 21. September 2009 – Die Autoren stellten Mitte September 2009 den parteiübergreifenden BerichtMeeting the Challenge: Time Is Running Outvor; PDF-Download möglich)
  26. Enrico Fels, Will the Eagle strangle the Dragon? As Assessment of the U.S. Challenges towards China’s Nuclear Deterrence, Trends East Asia Studie Nr. 20 (Februar 2008)
  27. Rick Fischer, Top Ten Chinese Military Modernization Developments

Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • National Missile Defense — Logo de la Missile Defense ayant succédé a l IDS …   Wikipédia en Français

  • National missile defense — This article is about systems to shield an entire country. For the ground based US missile defense system, see Ground Based Midcourse Defense. A Payload Launch Vehicle (PLV) carrying a prototype exoatmospheric kill vehicle is launched from Meck… …   Wikipedia

  • National missile defense — Logo de la Missile Defense Agency ayant succédé à l IDS; il a été modifié en 2010. Logo de 2002 à début 2010 de l agence de la garde nationale des États Unis chargée de la défense antimissile …   Wikipédia en Français

  • National Missile Defense in Canada — On 24 February 2005, Foreign Affairs Minister Pierre Pettigrew announced Canada would not be joining the United States missile defense program. In Canada, there was some level of debate over participation in the U.S. missile defense program. Many …   Wikipedia

  • Missile Defense Agency — MDA Agency overview Formed 2002 Preceding agencies …   Wikipedia

  • Missile Defense — National missile defense Logo de la Missile Defense ayant succédé a l IDS …   Wikipédia en Français

  • Missile defense — National missile defense Logo de la Missile Defense ayant succédé a l IDS …   Wikipédia en Français

  • Missile Defense Agency — MDA Emblem der Missile Defense Agency Aufstellung …   Deutsch Wikipedia

  • Missile defense — The Aegis Ballistic Missile Defense System. A RIM 161 Standard Missile 3 anti ballistic missile is launched from USS Shiloh, a US Navy Ticonderoga class cruiser …   Wikipedia

  • Missile Defense Alarm System — The Missile Defense Alarm System was an American system of 12 early warning satellites that provided limited notice of Soviet intercontinental ballistic missile launches between 1960 and 1966. Originally intended to serve as a complete early… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”