RFID

RFID
Verliehene Bücher mit RFID-Chips werden durch ein Lesegerät verbucht
Universelles RFID-Handlesegerät für 125 kHz, 134 kHz und 13,56 MHz; optional Barcode

Das Akronym RFID basiert auf dem englischen Begriff „radio-frequency identification“ [ˈɹeɪdɪəʊ ˈfɹiːkwənsi aɪˌdɛntɪfɪˈkeɪʃn̩]. Dies lässt sich ins Deutsche übersetzen mit „Identifizierung mit Hilfe elektromagnetischer Wellen“. RFID ermöglicht die automatische Identifizierung und Lokalisierung von Gegenständen und Lebewesen und erleichtert damit erheblich die Erfassung von Daten (umgangssprachlich auch Funketiketten genannt).

Ein RFID-System besteht aus einem Transponder, der sich am oder im Gegenstand bzw. Lebewesen befindet und einen kennzeichnenden Code enthält, sowie einem Lesegerät zum Auslesen dieser Kennung.

RFID-Transponder können so klein wie ein Reiskorn sein und implantiert werden, etwa bei Menschen oder Haustieren. Darüber hinaus besteht die Möglichkeit RFID-Transponder über ein spezielles Druckverfahren stabiler Schaltungen aus Polymeren herzustellen.[1] Die Vorteile dieser Technik ergeben sich aus der Kombination der geringen Größe, der unauffälligen Auslesemöglichkeit (z. B. neuer Pass) und dem geringen Preis der Transponder (teilweise im Cent-Bereich). Diese neue Technik kann den heute noch weit verbreiteten Barcode ersetzen.

Die Kopplung geschieht durch vom Lesegerät erzeugte magnetische Wechselfelder geringer Reichweite oder durch hochfrequente Radiowellen. Damit werden nicht nur Daten übertragen, sondern auch der Transponder mit Energie versorgt. Nur wenn größere Reichweiten erzielt werden sollen und die Kosten der Transponder nicht sehr kritisch sind, werden aktive Transponder mit eigener Stromversorgung eingesetzt.

Das Lesegerät enthält eine Software (ein Mikroprogramm), das den eigentlichen Leseprozess steuert, und eine RFID-Middleware mit Schnittstellen zu weiteren EDV-Systemen und Datenbanken.

Inhaltsverzeichnis

Entwicklungsgeschichte

Die ersten RFID-Anwendungen wurden Ende des Zweiten Weltkrieges eingesetzt. Dort diente ein Sekundärradar zur Freund-Feind-Erkennung. In den Flugzeugen und Panzern waren Transponder und Leseeinheiten angebracht, um zu erkennen, ob die zu beschießende Stellung oder die anfliegenden Flugzeuge anzugreifen waren oder nicht. Bis heute werden Nachfolgesysteme in den Armeen eingesetzt. Harry Stockman gilt als die Person, der die Grundlagen von RFID mit seiner Veröffentlichung „Communication by Means of Reflected Power“ im Oktober 1948 gelegt hat.[2]

Ende der 1960er Jahre wurde als eine von vielen proprietären Lösungen die „Siemens Car Identification“, kurz SICARID, entwickelt. Damit war es möglich, zunächst Eisenbahnwagen und später Autoteile in der Lackiererei eindeutig zu identifizieren. Eingesetzt wurde es bis in die 1980er Jahre. Die Identifikationsträger waren Hohlraumresonatoren, die durch das Eindrehen von Schrauben einen Datenraum von 12 bit abdecken konnten. Abgefragt wurden sie durch eine lineare Frequenzrampe. Diese Hohlraumresonatoren können als erste rein passive und elektromagnetisch abfragbare Transponder betrachtet werden. Der erste passive Backscatter-Transponder der heute noch verwendeten Bauart mit eigener digitaler Logikschaltung wurde erst 1975 in einem IEEE-Aufsatz vorgestellt.

In den 1970er wurden die ersten primitiven kommerziellen Vorläufer der RFID-Technik auf den Markt gebracht. Es handelte sich dabei um elektronische Warensicherungssysteme (engl. Electronic Article Surveillance, EAS). Durch Prüfung auf Vorhandensein der Markierung kann bei Diebstahl ein Alarm ausgelöst werden. Die Systeme basierten auf Hochfrequenztechnik bzw. niedrig- oder mittelfrequenter Induktionsübertragung.

Das Jahr 1979 brachte zahlreiche neue Entwicklungen und Einsatzmöglichkeiten für die RFID-Technik. Ein Schwerpunkt lag dabei auf Anwendungen für die Landwirtschaft, wie beispielsweise Tierkennzeichnung, z. B. für Brieftauben, Nutzvieh und andere Haustiere.

Gefördert wurde die Anwendung der RFID-Technik seit den 1980ern besonders durch die Entscheidung mehrerer amerikanischer Bundesstaaten sowie Norwegens, RFID-Transponder im Straßenverkehr für Mautsysteme einzusetzen. In den 1990er kam RFID-Technik in den USA verbreitet für Mautsysteme zum Einsatz.

Es folgten neue Systeme für elektronische Schlösser, Zutrittskontrollen, bargeldloses Zahlen, Skipässe, Tankkarten, elektronische Wegfahrsperren etc.[3][4]

1999 wurde mit Gründung des Auto-ID-Centers am MIT die Entwicklung eines globalen Standards zur Warenidentifikation eingeläutet. Mit Abschluss der Arbeiten zum Electronic Product Code (EPC) wurde das Auto-ID Center[5] 2003 geschlossen. Gleichzeitig wurden die Ergebnisse an die von Uniform Code Council (UCC) und EAN International (heute GS1 US und GS1) neu gegründete EPCglobal Inc. übergeben.

2006 ist es Forschern des Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (IFAM) in Bremen erstmals gelungen, temperaturunempfindliche RFID-Transponder in metallische Bauteile aus Leichtmetall einzugießen. Durch diese Verfahrensentwicklung ist es möglich, die herkömmlichen Methoden zur Produktkennzeichnung von Gussbauteilen durch die RFID-Technologie zu ersetzen und die RFID-Transponder direkt während der Bauteilherstellung im Druckgussverfahren in dem Bauteil zu integrieren.

Technik

Die RFID-Transponder unterscheiden sich zunächst je nach Übertragungsfrequenz, Hersteller und Verwendungszweck voneinander. Der Aufbau eines RFID-Transponders sieht prinzipiell eine Antenne, einen analogen Schaltkreis zum Empfangen und Senden (Transceiver), sowie einen digitalen Schaltkreis und einen permanenten Speicher vor. Der digitale Schaltkreis ist bei komplexeren Modellen ein kleiner Mikrocontroller.

RFID-Transponder verfügen mindestens über einen einmal beschreibbaren und oft lesbaren Speicher, der ihre unveränderliche Identität enthält. RFID-Transponder können über einen mehrfach beschreibbaren Speicher verfügen, in den während der Lebensdauer Informationen abgelegt werden können.

Nach Anwendungsgebiet unterscheiden sich auch die sonstigen Kennzahlen, wie z. B. Taktfrequenz, Übertragungsrate, Lebensdauer, Kosten pro Einheit, Speicherplatz, Lesereichweite und Funktionsumfang.

Funktionsweise

Die Übertragung der Identinformation erfolgt bei Systemen, die nach ISO 18000-1 ff. genormt sind, folgendermaßen: Das Lesegerät (Reader), das je nach Typ ggf. auch Daten schreiben kann, erzeugt ein hochfrequentes elektromagnetisches Wechselfeld, dem der RFID-Transponder (RFID-Tag) ausgesetzt wird. Die von ihm über die Antenne aufgenommene Hochfrequenzenergie dient während des Kommunikationsvorganges als Stromversorgung für seinen Chip. Bei aktiven Tags kann die Energieversorgung auch durch eine eingebaute Batterie erfolgen. Bei halb-aktiven Tags übernimmt die Batterie lediglich die Versorgung des Mikrochips.

Der so aktivierte Mikrochip im RFID-Tag decodiert die vom Lesegerät gesendeten Befehle. Die Antwort codiert und moduliert dieser „Reader“ in das eingestrahlte elektromagnetische Feld durch Feldschwächung im kontaktfreien Kurzschluss oder gegenphasige Reflexion des vom Lesegerät ausgesendeten Feldes. Damit überträgt das Tag seine eigene unveränderliche Seriennummer, weitere Daten des gekennzeichneten Objekts oder andere vom Lesegerät abgefragte Information. Das Tag erzeugt selbst also kein Feld, sondern beeinflusst das elektromagnetische Sendefeld des Readers.

Die RFID-Tags arbeiten je nach Typ im Bereich der Langwelle bei 125-134 kHz, der Kurzwelle bei 13,56 MHz, der UHF bei 865–869 MHz (Europäische Frequenzen) bzw. 950 MHz (US-Amerikanische und Asiatische Frequenzbänder) oder der SHF bei 2,45 GHz und 5,8 GHz. Die freigegebenen Frequenzen für LF-und UHF-Tags unterscheiden sich regional für Asien, Europa und Amerika und sind von der ITU koordiniert.

HF-Tags verwenden Lastmodulation, das heißt, sie verbrauchen durch Kurzschließen einen Teil der Energie des magnetischen Wechselfeldes. Dies kann das Lesegerät, theoretisch aber auch ein weiter entfernter Empfänger, detektieren. Die Antennen eines HF-Tags bilden eine Induktionsspule mit mehreren Windungen.

UHF-Tags hingegen arbeiten im elektromagnetischen Fernfeld zum Übermitteln der Antwort; das Verfahren nennt man modulierte Rückstreuung. Die Antennen sind meist lineare, gefaltete oder spiralige Dipole, der Chip sitzt in der Mitte zwischen den linearen oder mehrfach gewinkelten Dipolarmen des RFID-Tags. Es gibt auch UHF-Tags ohne solche Antennen, deren Reichweite ist extrem kurz.

Damit ein Tag sowohl horizontal als auch vertikal gelesen werden kann, verwendet man häufig zirkulare Polarisation. Diese reduziert zwar das Signal-Rausch-Verhältnis, dafür ist irrelevant, in welcher Orientierung das Tag auf die Ware geklebt wird. Da Wasser die UHF-Energie sehr stark absorbiert und Metall diese elektromagnetischen Wellen sehr stark reflektiert, beeinflussen diese Materialien die Ausbreitung der Antennenfelder. Weiterhin ‚verstimmen‘ dielektrische Untergrundmaterialien die Resonanzfrequenz der Antennen, daher ist es notwendig, UHF-Tags möglichst genau auf die Materialien der gekennzeichneten Objekte abzustimmen oder die Tags mit einer vom Untergrund abschirmenden Metallfolie auszustatten.

Die UHF- oder SHF-Technik sind erheblich komplexer ausgelegt als die LF- oder HF-Technik. Aufgrund ihrer Schnelligkeit können UHF- und SHF-Tags bei einer Passage erheblich längere Datensätze übertragen.

Ein handelsüblicher passiver UHF-Tag mit NXP-Chip nach ISO/IEC 18000–6C benötigt für den Chip etwa 0,35 Mikroampere an Strom. Die Energie dafür liefert das Strahlungsfeld des Readers. Da die Intensität quadratisch mit der Entfernung abnimmt, muss der Reader entsprechend stark senden, üblicherweise verwendet man hier zwischen 0,5 und 2 Watt EIRP Sendeleistung. Semi-aktive Tags kommen für gleiche Reichweite mit einem Hundertstel dieser Sendeleistung aus.

Für komplexere Anwendungen können auch Kryptographiemodule oder externe Sensoren wie z. B. GPS in den RFID-Transponder integriert sein. Die RFID-Sende-Empfangseinheiten unterscheiden sich in Reichweite, Funktionsumfang der Kontrollfunktionen und im Aussehen. So ist es möglich, sie direkt in Regale oder Personenschleusen (z. B. bei der Zugangssicherung und in Toreinfahrten) zu integrieren.

Die Vielzahl von unterschiedlichen Geräten und Etiketten ist im Rahmen der verschiedenen Normen (ISO/IEC-Standards ISO/IEC 18000-x) vollständig kompatibel. Es werden jedoch laufend neue proprietäre Lösungen vorgestellt, die von diesen Standards abweichen und zum Teil auch nicht gleichzeitig in einer Nachbarschaft verwendet werden können.

Auf verschiedenste Art kann es zu Problemen kommen, weil der RFID-Transponder direkt am Erzeugnis sitzt und dieses elektromagnetisch schlecht mit dem ausgewählten Tag verträglich ist. Um elektromagnetische Anpassungsprobleme zu umgehen, werden in der Logistik u. a. so genannte Flap- oder Flag-Tags eingesetzt, welche im rechten Winkel vom Produkt abstehen und so einen großen Abstand zum Produkt haben.

Der Leseerfolg (Lesequote) einer RFID-Lösung kann von einer Vielzahl von Fehlerfällen gemindert werden (Tag defekt, Leser defekt, Tag fehlt, Leser off-line, Bewegung in der falschen Richtung, zu schnell oder zu dicht nacheinander usw.).

Baugröße, Bauformen

RFID-Chip mit Antenne
13,56-MHz-Transponder

Transponder bestehen aus:

  • Mikrochip
  • Antenne
  • Träger oder Gehäuse
  • Energiequelle (bei aktiven Transpondern, siehe unten)

Maßgeblich für die Baugröße sind die Antenne, die Batterie und das Gehäuse. Die Form und Größe der Antenne ist abhängig von der Frequenz bzw. Wellenlänge. Je nach geforderter Anwendung werden Transponder in unterschiedlichen Bauformen, Größen und Schutzklassen angeboten.

Das Bild oben zeigt einen RFID-Chip in einer Scheckkarte. Vom Chip links unten führen zwei feine Drähte (grüne Pfeile) zu einer Spule. Sie besteht aus vielen Drahtwicklungen und füllt fast die gesamte Größe der Karte aus.

Aktive RFID-Transponder können, je nach Einsatzgebiet, durchaus die Größe von Büchern besitzen (z. B. in der Containerlogistik). Jedoch ist es mit heutiger Technik auch möglich, sehr kleine passive RFID-Transponder herzustellen, die sich in Geldscheinen oder Papier einsetzen lassen. So gab Hitachi am 16. Februar 2007 bekannt, staubkorngroße Chips mit einer Größe von 0,05 mm × 0,05 mm entwickelt zu haben.[6] Die Reichweite von passiven Transpondern ist neben der Frequenz auch maßgeblich von der Antennen- oder Spulengröße (Inlaygröße) abhängig. Die Reichweite sinkt sowohl bei UHF als auch bei HF mit kleineren Antennen rapide ab.

Transponder wurden ab Beginn des Einsatzes seit 1980 zunächst vorwiegend als LF 125 kHz passive produziert und eingesetzt. ISOCARD, CLAMSHELL Card-Bauformen aus dem LF-125-kHz-Bereich sind die weltweit am häufigsten verwendeten Bauformen im Bereich Zutrittskontrolle und Zeiterfassung. Genauso existieren auch Bauformen, die im Autoschlüssel eingebaut sind (Wegfahrsperre), bzw. als Implantate, Pansenboli oder Ohrmarken zur Identifikation von Tieren dienen. Weiterhin gibt es die Möglichkeit zur Integration in Nägel oder PU-Disk- TAGs zur Palettenidentifikation, in Chipcoins (Abrechnungssysteme z. B. in öffentlichen Bädern) oder in Chipkarten (Zutrittskontrolle).

Im Bereich E-PURSE (elektronische Geldbörse und Ticketing) findet die 13,56-MHz-Mifare- bzw. I-Code-Technologie (NXP) Anwendung und wird weltweit in vielen Städten (Seoul, Moskau, London, Warschau etc.) in U-Bahnen, Bussen und als Universitäts- und Studentenausweis genutzt. Transponder in Form von Etiketten, die beispielsweise die Mediensicherung und Verbuchung in Bibliotheken erleichtern, werden erst seit dem Jahr 2000 in großen Stückzahlen hergestellt.

Energieversorgung

Das deutlichste Unterscheidungsmerkmal stellt die Art der Energieversorgung der RFID-Transponder dar.

  • Passive RFID-Transponder versorgen sich aus den Funksignalen des Abfragegeräts. Mit einer Spule als Empfangsantenne wird durch Induktion ähnlich wie in einem Transformator ein Kondensator aufgeladen, der es ermöglicht, die Antwort in Unterbrechungen des Abfragesignals zu senden. Das erlaubt einen empfindlicheren Empfang des Antwortsignals, ungestört von Reflexionen des Abfragesignals von anderen Objekten. Bis allerdings genug Energie für ein Antwortsignal bereitsteht, vergeht eine Latenzzeit. Die geringe Leistung des Antwortsignals beschränkt die mögliche Reichweite. Aufgrund der geringen Kosten pro Transponder sind typische Anwendungen jene, bei denen viele Transponder gebraucht werden, z. B. Auszeichnung von Produkten oder Identifizieren von Dokumenten. Oft geschieht das mit Reichweiten von lediglich wenigen Zentimetern, um die Zahl der antwortenden Transponder klein zu halten.

RFID-Transponder mit eigener Energieversorgung ermöglichen höhere Reichweiten, geringere Latenzen, einen größeren Funktionsumfang, etwa eine Temperaturüberwachung von Kühltransporten, verursachen aber auch erheblich höhere Kosten pro Einheit. Deswegen werden sie dort eingesetzt, wo die zu identifizierenden oder zu verfolgenden Objekte selbst teuer sind, z. B. bei wiederverwendbaren Behältern in der Containerlogistik (für See-Container bisher nur vereinzelte Einführung, noch keine weltweit wirksame Übereinkunft) oder bei Lastkraftwagen im Zusammenhang mit der Mauterfassung.

Batteriebetriebene Transponder befinden sich meist im Ruhezustand (sleep modus) und senden keine Informationen aus, bevor sie durch ein spezielles Aktivierungssignal aktiviert (getriggert) werden. Das erhöht die Lebensdauer der Energiequelle auf Monate bis Jahre. Es werden zwei Arten von gesondert mit Energie versorgten RFID-Transpondern unterschieden:

  • Aktive RFID-Transponder nutzen ihre Energiequelle sowohl für die Versorgung des Mikrochips als auch für das Erzeugen des modulierten Rücksignals. Die Reichweite kann – je nach zulässiger Sendeleistung – Kilometer betragen.
  • Semi-aktive RFID-Transponder oder auch Semi-passive RFID-Transponder sind sparsamer, denn sie besitzen keinen eigenen Sender, modulieren lediglich ihren Rückstreukoeffizienten, siehe Modulierte Rückstreuung. Dafür ist die Reichweite auf maximal 100 m reduziert, abhängig von Leistung und Antennengewinn des Senders. Die anderen Vorteile gegenüber passiven Transpondern bleiben erhalten.

Frequenzbereiche

Für den Einsatz wurden bisher verschiedene ISM-Frequenzbänder vorgeschlagen und zum Teil europaweit oder international freigegeben:

  • Niedrige Frequenzen (LF, 30–500 kHz). Diese Systeme weisen eine geringe Reichweite auf, arbeiten in der am häufigsten verwendeten 64-bit-read-only-Technologie einwandfrei und schnell genug für viele Anwendungen. Bei größeren Datenmengen ergeben sich längere Übertragungszeiten. LF-Transponder sind günstig in der Anschaffung, kommen mit hoher (Luft-)Feuchtigkeit und Metall zurecht und werden in vielfältigen Bauformen angeboten. Diese Eigenschaften begünstigen den Einsatz in rauen Industrieumgebungen, sie werden jedoch auch z. B. für Zugangskontrollen, Wegfahrsperren und Lagerverwaltung (häufig 125 kHz) verwendet. LF-Versionen eignen sich auch für den Einsatzfall in explosionsgefährdeten Bereichen. Hier können ATEX-zertifizierte Versionen eingesetzt werden.
  • Hohe Frequenzen (HF, 3–30 MHz). Kurze bis mittlere Reichweite, mittlere Übertragungsgeschwindigkeit, mittlere bis günstige Preisklasse der Lesegeräte. In diesem Frequenzbereich arbeiten die sog. Smart Tags (meist 13,56 MHz).
  • Sehr hohe Frequenzen (UHF, 433 MHz (USA, DoD), 850–950 MHz (EPC und andere)). Hohe Reichweite (2–6 Meter für passive Transponder ISO/IEC 18000–6C; um 6 Meter und bis 100 m für semi-aktive Transponder) und hohe Lesegeschwindigkeit. Niedrige Preise für kurzlebige passive Transponder, höhere Preise für dauerhafte Transponder, tendenziell hohe Preise für aktive Transponder. Einsatz z. B. im Bereich der manuellen, halbautomatischen, automatisierten Warenverteilung mit Paletten und Container-Identifikation (Türsiegel, License-Plates) und zur Kontrolle von einzelnen Versand- und Handelseinheiten (EPC-Tags) sowie für Kfz-Kennzeichen (bisher nur in Großbritannien). Typische Frequenzen sind 433 MHz, 868 MHz (Europa), 915 MHz (USA), 950 MHz (Japan). Durch ihren geringen Preis werden sie inzwischen auch dauerhaft auf Produkten für den Endverbraucher wie zum Beispiel Kleidung eingesetzt, ihre Reichweite von mehrere Metern verursacht jedoch manchmal falsche Lesungen durch die Reader, zum Beispiel durch Reflexionen.[7]
  • Mikrowellen-Frequenzen (SHF, 2,4–2,5 GHz, 5,8 GHz und darüber). Kurze Reichweite für ausschließlich semi-aktive Transponder von 0,5 m bis 6 m bei rasanter Lesegeschwindigkeit wegen hoher Passagegeschwindigkeit für Fahrzeuganwendungen (PKW in Parkhäusern, Waggons in Bahnhöfen, LKW in Einfahrten, alle Fahrzeugtypen an Mautstationen).

Verschlüsselung

Die älteren Typen der RFID-Transponder senden ihre Informationen, wie in der Norm ISO/IEC 18000 vorgesehen, in Klartext. Neuere Modelle verfügen zusätzlich über die Möglichkeit, ihre Daten verschlüsselt zu übertragen oder Teile des Datenspeichers nicht jedem Zugriff zu öffnen. Bei speziellen RFID-Transpondern, die beispielsweise zur Zugriffskontrolle von externen mobilen Sicherheitsmedien dienen, werden die RFID-Informationen bereits nach AES-Standard mit 128-Bit verschlüsselt übertragen.

Modulations- und Kodierungsverfahren

Keying/Modulation bezeichnet ein Verfahren, um digitale Signale über analoge Übertragungskanäle leiten zu können. Der Begriff Keying kommt aus den Anfangszeiten des Telegraphen. Modulationsverfahren sind unter anderem:

Höhere Modulationsverfahren wie die Phasenjittermodulation werden bei RFID-Systemen dann eingesetzt, wenn sehr viele RFIDs in räumlicher Nähe nahezu zeitgleich ausgelesen werden sollen.

Die Leitungscodierung („encoding“) legt zwischen Sender und Empfänger fest wie die digitalen Daten so umcodiert werden, um bei der Übertragung möglichst optimal an die Eigenschaften des Übertragungskanals, in diesem Fall der Funkstrecke, angepasst zu sein. Die meist verwendeten Kanalcodierungsverfahren im RFID-Bereich sind:

Einen Sonderfall stellen SAW-Tags dar, die SAW-Effekte nutzen. Dabei wird die Kennung in der Laufzeit der reflektierten Signale kodiert.

Pulk-Erkennung

Unter dem Begriff Pulk-Erkennung versteht man eine Nutzung bekannter Protokolle, in dem einzelne RFID-Tags unmittelbar nacheinander gelesen werden, wobei dieser Prozess sich selbst organisiert. Das heißt, dass

  • nicht alle Tags sich gleichzeitig bei dem gleichen Reader melden, und
  • jedes Tag möglichst lediglich einmal gelesen wird, und
  • ein einmal gelesenes Tag nach dem ersten erfolgreichen Lesen schweigt, bis es das Lesefeld verlässt oder das Lesefeld abgeschaltet wird,
  • oder das einzelne dort bereits bekannte Tag vom Leser direkt erneut aktiviert wird.

Viele Anwendungen dieser auch „Singulation“ genannten funktechnischen Vereinzelung soll es dem Empfänger ermöglichen, die verschiedenen Identitäten der vorhandenen Tags streng nacheinander zu erkennen. Das Konzept ist in der Norm in verschiedener Ausprägung vorgesehen, aber bisher erkennbar nicht verbreitet. Weitere proprietäre Ausprägungen finden sich bei den verschiedenen Herstellern. An technischen Problemen mit passiven Tags ändert nichts, dass aktive Tags sich willkürlich bei einem Empfänger melden können.

Folgendes Problem wird allein durch RFID-Tags nicht gelöst: Zu erkennen,

  • wie viele Objekte,
  • wie viele Tags und
  • wie viele gelesene Kennzeichen

einen guten Leseerfolg ausmachen.

Seit ersten Berichten bis heute sind keine Einrichtungen der Pulk-Erkennung bekannt, die eine vollständige Erfassung sicherstellen (2011). Pulk-Erkennung ist für eine Inventarisierung oder eine Kontrolle der Vollständigkeit ungeeignet.

Wenn im Lesevorgang kein Anti-Kollisionsverfahren und keine Stummschaltung wirken, ist die geometrische Vereinzelung außerhalb des Lesebereichs und die Beschränkung auf jeweils ein Tag im Lesebereich die Verfahrensweise mit generell besserer Erkennungsquote.

Antikollisions- oder Multi-Zugangsverfahren (Anti-collision)

Die Antikollision beschreibt eine Menge von Prozeduren, die den Tags ermöglichen, gleichzeitig zu kommunizieren, also das Überlagern mehrerer verschiedener Signale ausschließen soll. Das Antikollisionsverfahren regelt die Einhaltung der Reihenfolge bzw. Abstände der Antworten, beispielsweise durch zufällig verteiltes Senden dieser Responses, so dass der Empfänger jedes Tag einzeln auslesen kann. Die Leistung der Antikollisionsverfahren wird in der Einheit „Tags/s“ gemessen. Es gibt vier Grundarten für Antikollisions- oder Multi-Zugangsverfahren:

Typische Antikollisionsverfahren im RFID-Bereich sind:

  • Slotted ALOHA: eine Variante des ALOHA-Verfahrens aus den 1970er (Aloha Networks, Hawaii). Aloha war die Inspiration für das Ethernet-Protokoll und ist ein TDMA-Verfahren.
  • Adaptive Binary Tree: Dieses Verfahren verwendet eine binäre Suche, um einen bestimmten Tag in einer Masse zu finden.
  • Slotted Terminal Adaptive Collection (STAC): hat Ähnlichkeiten mit dem ALOHA-Verfahren, ist aber erheblich komplexer.
  • EPC UHF Class I Gen 2: ist ein Singulationsverfahren.

Identität (Identity)

Alle RFID-Tags müssen eindeutig gekennzeichnet sein, damit der Empfänger Responses/Requests aller Tags erkennen kann:[8] RFID-Tags, in denen diese Kennzeichnung geändert werden kann, sind für eine sichere Prozessführung in einem offenen System ohne praktischen Wert (Beispiel: EPC Generation 1).

Unterscheidungsmerkmale von RFID-Systemen

Mindestmerkmale eines RFID-Systems sind:

  • ein Nummernsystem für RFID-Tags und für die zu kennzeichnenden Gegenstände[9]
  • eine Verfahrensbeschreibung für das Kennzeichnen und für das Beschreiben und das Lesen der Kennzeichen[10]
  • ein an Gegenständen oder Lebewesen angebrachtes RFID-Tag, welches elektronisch und berührungslos eine seriell auszulesende Information bereitstellt
  • ein dazu passendes RFID-Lesegerät

Zusatzfunktionen

Viele Tags unterstützen auch eine oder mehrere der folgenden Operationen:

  • Die Tags können über einen sogenannten „kill code“ oder z. B. durch ein Magnetfeld permanent deaktiviert werden (engl. kill, disable).
  • Die Tags erlauben ein einmaliges Schreiben von Daten (engl. write once).
  • Die Tags können mehrmals mit Daten beschrieben werden (engl. write many).
  • Antikollision: Die Tags wissen, wann sie warten oder Anfragen beantworten müssen.
  • Sicherheit: Die Tags können (auch verschlüsselt) ein geheimes Passwort verlangen, bevor sie kommunizieren.

Datenstrom-Betriebsarten

RFID kann im Duplexbetrieb oder sequentiell Daten mit dem Lesegerät austauschen. Man unterscheidet:

  • full duplex system (FDX) (Zuverlässig durch kontinuierlichem Datenstrom, geringe Reichweite)
  • half duplex system (HDX) (gepulste Daten-Antwort, verbesserte Reichweite mittels in einem Kondensator integriert gesammelter Energie, Timing komplex)
  • sequential system (SEQ)

Speicherkapazität

Die Kapazität des beschreibbaren Speichers eines RFID-Chips reicht von wenigen Bit bis zu mehreren KBytes. Die 1-Bit-Transponder sind beispielsweise in Warensicherungsetiketten und lassen nur die Unterscheidung „da“ oder „nicht da“ zu.

Der Datensatz des Transponders wird bei dessen Herstellung fest in ihm als laufende eindeutige Zahl (inhärente Identität) oder bei dessen Applikation als nicht einmalige Daten (z. B. Chargennummer) abgelegt werden. Moderne Tags können auch später geändert oder mit weiteren Daten beschrieben werden.

Beschreibbarkeit

Beschreibbare Transponder verwenden derzeit meist folgende Speichertechnologien:

  • nicht-flüchtige Speicher (Daten bleiben ohne Stromversorgung erhalten, daher geeignet für induktiv versorgte RFID):
  • flüchtige Speicher (benötigen eine ununterbrochene Stromversorgung um die Daten zu behalten):

Energieversorgung

Passive Transponder entnehmen ihre Betriebsspannung dem (elektromagnetischen) Feld und speichern sie für den Antwortvorgang in Kapazitäten im Chip. Das Lesegerät beleuchtet den Chip und dieser reflektiert einen geringen Teil der Energie. Die eingestrahlte Energie muss etwa 1.000 mal größer sein als die für den Antwortvorgang verfügbare Energie. Damit benötigen passive Transponder das mit Abstand energiereichste Lesefeld.

Semi-passive (auch genannt semi-aktive) Transponder besitzen eine (Stütz-)Batterie für den volatilen (flüchtigen) Speicher und zum Betrieb angeschlossener Sensoren, nicht jedoch für die Datenübertragung. Das Energieverhältnis zwischen Beleuchtung und Rückstrahlung entspricht dem passiver Tags.

Aktive Transponder nutzen Batterien für den Prozessor und auch für den Datentransfer, sind mit einem eigenen Sender ausgestattet und erreichen so eine höhere Reichweite. Das Abfragesignal des Lesegeräts ist etwa so gering wie das Sendesignal des Transponders, somit ist der Lesevorgang für aktive Transponder verglichen mit passiven Transpondern besonders störungsarm.

Baken-Transmitter, die fortlaufend intermittierend senden und nicht auf eine Anregung reagieren, arbeiten immer mit Batterien (Primärbatterien oder Akkus). Das Energieverhältnis zwischen Abfrage und Antwortsignal entspricht dem aktiver Tags. Der Sendevorgang für Baken-Transponder ist ungeachtet der steten Sendefunktion verglichen mit passiven Transpondern besonders störungsarm.

In Deutschland werden aktive Transponder auch als Telemetriegeräte (siehe unten) klassifiziert. Auch Telemetrie-SRD (Funkverbindungen über kurze Entfernungen, z. B. von Sensoren) werden teilweise als RFID bezeichnet, sie benutzen einen aktiven Sender, der z. B. mit Solarzellen oder der Bewegung des Gegenstandes (z. B. Reifendrucksensor) mit Energie versorgt wird. Bei warmblütigen Lebewesen ist auch die Versorgung aus einer Temperaturdifferenz in Entwicklung.[11]

Betriebsfrequenz

Frequenz Bereich Erlaubte Frequenzen (ISM-Band)
Langwellen-Frequenzen (LF) 30…300 kHz 9 kHz … 135 kHz
Kurzwellen-Frequenzen (HF/RF) 3…30 MHz 6,78 MHz, 13,56 MHz, 27,125 MHz, 40,680 MHz
Dezimeterwellen (UHF) 0,3…3 GHz 433,920 MHz, 869 MHz, 915 MHz, 2,45 GHz
Mikrowellen > 3 GHz 5,8 GHz, 24,125 GHz

Reichweiten und typische Anwendungen

Nach dem englischen Sprachgebrauch haben sich folgende Unterscheidungen etabliert:[12]

  • Close coupling: 0…1 cm (ISO 10536)
  • Remote coupling (auch proximity coupling): 0…0,1 m (ISO 14443, ISO 18000-3)
  • Remote coupling (auch vicinity coupling): 0…1 m (ISO 15693, ISO 18000-3)
  • Long range coupling: mehr als 1 m (ISO 18000-4, ISO 18000-5, ISO 18000-7)
Frequenz Typische max. Reichweite für Tags Typische Anwendungen
Langwellen-Frequenzen (LF) 50 cm (passiv) Tier-Identifizierung und Lesen von Gegenständen mit hohem Wasseranteil
Kurzwellen-Frequenzen (HF/RF) 0,5 m (passiv) Zugangskontrolle
Dezimeterwellen (UHF) 3-6 m (passiv) Lager und Logistikbereich (Paletten)
Mikrowellen ~ 10 m (aktiv) Fahrzeug-Identifizierung

Technisch können größere Distanzen erreicht werden, typisch sind jedoch lediglich die angegebenen Reichweiten bei zugelassenen Sendefeldstärken. Dabei ist die Beleuchtungefeldstärke für passive Tags (Abfrage durch Lesegeräte) etwa um den Faktor 1.000 höher als die Sendefeldstärke aktiver Tags (Empfang durch Lesegeräte).

Trennschärfe und typische Anwendungen

Die Erhöhung der Reichweite senkt gleichzeitig die lokale Trennschärfe (Transponder nebeneinander) und die finale Trennschärfe (Transponder nacheinander). Je mehr Transponder fast gleichzeitig (final) oder gleich gut (lokal) antworten, desto geringer wird die Erkenntnis, welcher von wo geantwortet hat. Daher werden Reichweite und Trennschärfe bei einem für den Betriebseinsatz tauglichen System miteinander ausgewogen bewertet.

Insbesondere an Ladetoren wäre es untauglich, die Reichweite so zu steigern, dass nicht mehr erkennbar wäre, welche Ware durch welches Tor das Lager verlässt. Ebenso wäre es wenig hilfreich, wenn ein Transponder nacheinander die passende Antwort für mehrere Objekte geben würde, ohne dass sich physikalisch etwas Entsprechendes ändert.

Frequenzbeeinflussung

  • Reflexion / gerichtete bzw. ungerichtete Streuung (backscatter): Frequenz der reflektierten Welle ist die Sendefrequenz des Lesegerätes
  • Dämpfungsmodulation: durch den Transponder wird das Feld des Lesegerätes beeinflusst – Frequenzverhältnis 1:1)
  • subharmonische Welle (Frequenzverhältnis 1:n)
  • Erzeugung von Oberwellen (n-fache) im Transponder

Kopplungsmethoden

  • elektrostatische Felder in kapazitiver Kopplung (für RFID eher die Ausnahme, kein Standard)
  • magnetische Felder für induktive Kopplung oder Nahfeldkopplung(NFC): Datenübertragung und meist auch Energieversorgung erfolgen über das magnetische Nahfeld der Spulen im Lesegerät und im Tag (üblich sind Rahmenantennen oder Ferritantennen). Diese Kopplung ist üblich bei Frequenzen von 135 kHz (ISO 18000-2) und 13,56 MHz (ISO 18000-3) sowie für 13,56 MHz NFC (ISO 22536).
  • elektromagnetische Dipolfelder für Fernfeldkopplung: Datenübertragung und oft auch Energieversorgung erfolgen mit Antennen (üblich sind Dipolantennen oder Spiralantennen). Diese Kopplung ist üblich bei Frequenzen von 433 MHz (ISO 18000-7), bei 868 MHz (ISO 18000-6) und bei 2,45 GHz (ISO 18000-4).

Einsatz

Generell ist die Logistik die Hauptüberschrift für das Einsatzgebiet. Logistische Problemstellungen gehen quer durch alle Branchen. Hier gibt es ein riesiges Rationalisierungspotential auszuschöpfen. Der Durchbruch zu allgemeiner Ausbreitung scheitert in der Regel an Problemen, den Geschäftsfall (business case) über Unternehmensgrenzen hinweg zu budgetieren.

Manche Institutionen erhoffen sich darüber hinaus eine verbesserte Überwachung im Personen- und Warenverkehr. Der technische Aufwand und die Kosten auf der RFID-Seite sind überschaubar. Die zu erwartenden riesigen Datenmengen begrenzen die praktische Ausführung.

Der Begriff „fälschungssicher“ in diesem Zusammenhang wird sich nach kurzer Zeit relativieren.

Die folgende Aufzählung enthält nur einige, derzeit (2006) wichtige Gebiete:

Fahrzeugidentifikation
Electronic Road Pricing System in Singapur
Die e-Plate-Nummernschilder identifizieren sich automatisch an Lesegeräten. Dadurch sind Zugangskontrollen, Innenstadtmautsysteme und auch Section-Control-Geschwindigkeitsmessungen möglich. Bei entsprechend dichtem Sensorennetz lassen sich auch Wegeprofile erstellen. In einem Großversuch hat das britische Verkehrsministerium im April/Mai 2006 ca. 50.000 Nummernschilder mit RFID-Funkchips ausstatten lassen. Ziel ist die Informationssammlung über die Fälschungsrate sowie die Gültigkeit von Zulassung und Versicherungsschutz. Bei erfolgreicher Erprobung ist eine flächendeckende Einführung geplant. Die Erfassung erfolgt im Abstand von weniger als zehn Metern. Eine Verwertung der Geschwindigkeitsmessung mit Hilfe dieser Technik ist durch die britische Rechtsprechung derzeit stark eingeschränkt.
Banknoten
Bereits im Jahr 2003 wurde bekannt, dass die Europäische Zentralbank mit dem japanischen Elektronikkonzern Hitachi über eine Integration von RFID-Transpondern in Euro-Banknoten verhandle.[13] Auf dem sogenannten μ-Chip (0,4 mm × 0,4 mm) ist eine eindeutige 38-stellige Zahlenfolge (128 Bit) gespeichert.[14] Mit einem solchen RFID-Chip gekennzeichnete Banknoten sollen besser gegen Geldfälscherei geschützt sein. Vorstellbar wäre aber auch eine lückenlose Dokumentation des Umlaufs. Aufgrund der mit der Implementierung verbundenen Kosten sowie datenschutzrechtlicher Probleme ist die Einführung bislang nicht vorgesehen.
Bankkarten
EC-Karten mit Funk-Bezahlsystem [15] erlauben auch eine Identifizierung, stellen aber durch ihre Zusatzfunktion des berührungslosen Abbuchens von Geld ein Sicherheitsrisiko dar, weil so der Austausch kontenbezogener Daten von Dritten im Nahfeld unbemerkt mitgelesen werden kann
Identifizierung von Personen
RFID-Chips sind in allen seit dem 1. November 2005 ausgestellten deutschen Reisepässen sowie ab dem 1. November 2010 in allen Personalausweisen enthalten.
Im November 2004 genehmigte die US-amerikanische Gesundheitsbehörde (FDA) den Einsatz des „VeriChip“ am Menschen.[16] Der Transponder der US-amerikanischen Firma Applied Digital Solutions wird unter der Haut eingepflanzt. Geworben wird mit einfacher Verfügbarkeit lebenswichtiger Informationen im Notfall. Andere Lösungen arbeiten dagegen mit Patientenarmbändern und koppeln diese Daten über den PDA des medizinischen Personals mit dem Patienteninformationssystem im Krankenhaus.[17]
Echtheitsmerkmal für Medikamente
Die US-Arzneimittelbehörde FDA empfiehlt den Einsatz von RFID-Technik im Kampf gegen gefälschte Medikamente. Bisher werden jedoch überwiegend optische Verfahren eingesetzt, da deren materieller Aufwand wirtschaftlich vertretbar ist. Für den Transport temperaturempfindlicher Medizinprodukte werden vielfach RFID-Tags mit Sensorfunktionen an den Transportbehältern eingesetzt. Die Aufzeichnung dokumentiert eine Verletzung von Transportbedingungen und unterstützt den Schutz der Patienten durch qualifiziertes Verwerfen eines falsch transportierten Gutes.
Kennzeichnung von Leiterplatten mit RFID-Tags
RFID-Tags werden eingesetzt, um Leiterplatten oder andere Bauteile rückverfolgbar zu machen.[18] Leiterplatten wurden bislang häufig mit Barcodes gekennzeichnet.
Textil- und Bekleidungsindustrie
In der Textil- und Bekleidungsindustrie ist ein zunehmend flächendeckender Einsatz von RFID aufgrund einer im Vergleich zu anderen Branchen höheren Marge sehr wahrscheinlich. Als weltweit erstes Unternehmen hat Lemmi Fashion (Kindermode) die komplette Lieferkette auf RFID umgerüstet und eine weitreichende Integration mit der Warenwirtschaft umgesetzt. Die Firma Levi Strauss & Co. hat ebenfalls begonnen, ihre Jeans mit RFID-Etiketten auszustatten.[19] Ein weiterer RFID-Pionier ist die Firma Gerry Weber, die sich seit 2004 in diversen Projekten mit der Technologie beschäftigte und seit 2010 in alle Bekleidungsstücke einen RFID-Tag integriert, der gleichzeitig als Warensicherung fungiert.[20][21][22]
Container-Siegel
Für See-Container sind spezielle mechanische Siegel mit zusätzlichen RFID-Tags entworfen worden, die in Einzelfällen bereits benutzt werden. Sie werden entweder wiederholt genutzt (semi-aktive RFID-Tags nach ISO/IEC 17363, ab 2007) oder einmalig eingesetzt (passive RFID-Tags nach ISO/IEC 18185, ab 2007). Bisher gibt es keine Verpflichtung zur Verwendung solcher elektronischen Siegel.
Tieridentifikation
Glastransponder zur Tieridentifikation (2-Euro-Münze zum Größenvergleich)
Seit den 1970er Jahren kommen RFID-Transponder bei Nutztieren zum Einsatz. Außer der Kennzeichnung von Nutztieren mit Halsbändern, Ohrmarken und Boli werden Implantate bei Haustieren (EU-Heimtierausweis, ISO/IEC 11784 und ISO/IEC 11785) verwendet. Auch die Tiere im Zoo erhalten solche Implantate.
  • 125 kHz International Zootierhaltung, Nutztieridentifikation, Meeresschildkröten Erfassung, Forschung.
  • ISO 134,2 kHz (ursprünglich Europäischer) Internationaler Standard in der Nutztieridentifikation, Implantate bei Haustieren.[23]
Automobile Wegfahrsperre
Als Bestandteil des Fahrzeugschlüssels bilden Transponder das Rückgrat der elektronischen Wegfahrsperren. Der Transponder wird dabei im eingesteckten Zustand über eine Zündschloss-Lesespule ausgelesen und stellt mit seinem abgespeicherten Code das ergänzende Schlüsselelement des Fahrzeugschlüssels dar. Für diesen Zweck werden üblicherweise Crypto-Transponder eingesetzt, deren Inhalt nicht ohne deren Zerstörung manipuliert werden kann.
Kontaktlose Chipkarten
In Asien sowie größeren Städten weit verbreitet sind berührungslose, wiederaufladbare Fahrkarten. Weltweiter Marktführer für das sogenannte Ticketing ist NXP (hervorgegangen aus Philips) mit seinem Mifare-System. In den USA und in Europa werden Systeme zur Zutrittskontrolle und Zeiterfassung bereits häufig mit RFID-Technik realisiert. Hier werden weltweit meist Mifare oder HiD bzw. iClass5 und in Europa hauptsächlich Legic, Mifare und teilweise unterschiedliche 125 kHz-Verfahren (Hitag, Miro etc.) eingesetzt. Manche Kreditkarten-Anbieter setzten RFID-Chips bereits als Nachfolger von Magnetstreifen bzw. Kontakt-Chips ein. 2006 kam die RFID-Technik in Deutschland bei den Eintrittskarten der Fußball-Weltmeisterschaft zum Einsatz. Ziel ist es, den Ticketschwarzhandel durch Bindung der Karte an den Käufer zu reduzieren. Bei Bayer 04 Leverkusen, VfL Wolfsburg und Alemannia Aachen kommt diese Technologie bereits bei Bundesliga-Spielen zum Einsatz. Fast alle größeren Skigebiete der Alpen verwenden heutzutage nur noch kontaktlose Skipässe.
Waren- und Bestandsmanagement
In Bibliotheken jeder Größe und Typs wird RFID zur Medienverbuchung und Sicherung verwendet. Prominente Installationen sind die Münchner Stadtbibliothek, die großen Hamburger Stadtbibliotheken, die Wiener Hauptbücherei, die Stadtbücherei Stuttgart und die Hauptbibliotheken der Technischen Universität Graz und des Karlsruher Instituts für Technologie. Die RFID-Lesegeräte sind in der Lage, spezielle RFID-Transponder stapelweise und berührungslos zu lesen. Dieses Leistungsmerkmal bezeichnet man mit Pulklesung. Das bedeutet bei der Entleihe und Rückgabe, dass die Bücher, Zeitschriften und audiovisuellen Medien nicht einzeln aufgelegt und gescannt werden müssen. Der Bibliotheksbenutzer kann auf diese Weise an RFID-Selbstverbuchungsterminals alle Medien selbständig ausleihen. Auch die Medienrückgabe kann automatisiert werden: Eigens entwickelte RFID-Rückgabeautomaten ermöglichen eine Rückgabe außerhalb der Öffnungszeiten. An den Türen und Aufgängen befinden sich Lesegeräte, die wie Sicherheitsschranken in den Kaufhäusern aussehen. Sie kontrollieren die korrekte Entleihe. Mit speziellen RFID-Lesegeräten wird die Inventarisierung des Bestandes und das Auffinden vermisster Medien spürbar einfacher und schneller.
Große Einzelhandelsketten wie Metro, Rewe, Tesco und Wal-Mart sind an der Verwendung von RFID bei der Kontrolle des Warenflusses im Verkaufsraum interessiert. Dieser Einsatz hat in letzter Zeit zu Diskussionen geführt. Der Vereinfachung für den Kunden (z. B. Automatisierung des Bezahlvorganges) stehen Datenschutzbedenken gegenüber.
Positionsbestimmung
Im industriellen Einsatz in geschlossenen Arealen sind fahrerlose Transportsysteme (AGV) im Einsatz, bei der die Position mit Hilfe von in geringen Abstand zueinander im Boden eingelassenen Transpondern aufgrund von deren bekannter Position über die gelesene Identität und über Interpolation bestimmt wird. Solche Systeme sind davon abhängig, dass ausschließlich zuvor bestimmte Trassen und Routen befahren werden. Sobald ein Fahrzeug diese Trassen verlässt, ist das System unwirksam. Schienenfahrzeuge haben dieses Problem nicht, siehe die magnetisch gekoppelte Eurobalise.
Zeiterfassung
Zeiterfassungsterminal mit RFID
Transponder dienen am Schuh oder in der Startnummer eines Läufers bzw. im Rahmen eines Rennrades als digitales Identifikationsmerkmal in Sportwettkämpfen (Produktbeispiele: ChampionChip, Bibchip).
An Terminals werden die Zeiten des Kommens und Gehens, evtl. auch der Pausenzeiten erfasst, wenn der Nutzer sein RFID-Medium (meist Chipkarte oder Schlüsselanhänger) in Lesereichweite bringt.
Müllentsorgung
In den Österreichischen Bezirken Kufstein und Kitzbühel wurde bereits im Jahr 1993 ein auf RFID basierendes Müllmesssystem nach Liter entwickelt und flächendeckend eingeführt, sämtliche Transponder der Erstausgabe (AEGID Trovan ID200 125 kHz) aus dem Jahr 1993 sind dort trotz erneuerter Abfuhrfahrzeuge (und Reader-Einheiten) bis heute in der Originalbestückung unverändert im Einsatz. Eine Müllvorschreibung erfolgt bei diesem System nach tatsächlich gemessenen Litern (Laufende Abrechnung je Quartal). Das System verknüpft über die Adresselemente Straße, Hausnummer, Türe und Top, automatisiert eine Personenanzahl (Datenabfrage aus dem zentralen Melderegister Österreichs) mit jedem Müllgefäß, und summiert unabhängig von einer tatsächlich abgeführten Müllmenge diese virtuell errechnete Mindestmüllmenge auf die Müllgefäßkonten. Zur Vermeidung eines sonst unweigerlichen Missbrauchs einer aufkommensgerechten Abfallvergebührung durch Littering vergleicht das System am Jahresende eine tatsächlich abgeführte Jahresmüllmenge je Gefäß mit einer virtuell aus der Personenanzahl errechneten Mindestmüllmenge (je Gemeinde 2-3 Liter je Woche und Person), und schreibt bei einer Unterschreitung der bemessenen Müllmenge eine Differenz am Jahresabschluss jedenfalls vor. Das beschriebene System befindet sich seit mehr als 14 Jahren konfliktfrei und ohne technisch bedingten Datenverlust im Einsatz. Datenschutzrechtliche Abläufe finden ausnahmslos innerhalb der kommunalen Gemeindeverwaltung statt, jeder Bürger kann auf Verlangen in seine Müllmessdaten in seiner Heimatgemeinde Einsicht nehmen.
In den deutschen Städten Bremen und Dresden sind Mülltonnen für die gebührenpflichtige Abfuhr ebenfalls mit RFID-Transpondern versehen. Die gebührenfreie Abfuhr von Papier, Grünabfall und Verpackung wird hingegen nicht erfasst. Bei der Leerung erfassen die Abfuhrfahrzeuge mittels geeichter Waagen das Gewicht jeder einzelnen Tonne. Über RFID ist die Zuordnung des Abholgewichts jeder Tonne zu einem individuellen Haushalt möglich, die Bürger erhalten in Dresden eine Abrechnung, die auf dem tatsächlich geleerten Gewicht (und nicht, wie sonst üblich, auf einer Volumenpauschale) basiert, bzw. in Bremen über die Anzahl der über die Pauschale hinaus erfolgten tatsächlichen Leerungen (und nicht, wie sonst üblich, allein auf einer pauschalen Anzahl).
In Großbritannien wurden mehrere hunderttausend Mülltonnen ohne Wissen der Bürger mit RFID-Transpondern versehen.[24] Hintergrund soll die Absicht der britischen Kommunen sein, das Recyclingverhalten der Bürger zu erfassen.[25]
Zugriffskontrolle
Transponder am oder im Schlüssel dienen zur Kontrolle, wenn Workstations mit entsprechenden Lesegeräten ausgestattet sind, ebenso zur Benutzerauthentifizierung für spezielle externe mobile Sicherheitsfestplatten, wenn diese im Gehäuse mit entsprechenden Lesegeräten ausgestattet sind.
Zutrittskontrolle
Transponder am oder im Schlüssel dienen zur Zutrittskontrolle, wenn die Türen mit entsprechenden Lesegeräten oder mit entsprechenden Schließzylindern mit Leseoption ausgestattet sind.

Verbreitung und Kosten

Branche Kum. Anz. (in Mio.)
Transport/Automotive 1000
Finanzen/Sicherheit 670
Handel/Konsumgüter 230
Freizeit 100
Wäschereien 75
Bibliotheken 70
Fertigung 50
Tiere/Landwirtschaft 45
Gesundheitswesen 40
Flugverkehr 25
Logistik/Post 10
Militär 2
Sonstige 80
Total 2397

Kumuliert wurden in den Jahren von 1944 bis 2005 insgesamt 2,397 Milliarden RFID-Chips verkauft.[26] Die genaue Verbreitung nach Anwendung sieht wie folgt aus:

Im Jahr 2005 wurden 565 Millionen Hochfrequenz-RFID-Tags (nach ISO/IEC 14443) abgesetzt, was insbesondere auf die erhöhte Nachfrage im Logistik-Bereich zurückzuführen ist.[27] Für das Jahr 2006 erwartete man einen weltweiten Absatz von 1,3 Milliarden RFID-Tags.[28] U. a. wegen der zunehmenden Vereinheitlichung von RFID-Lösungen sowie dem gewachsenen Austausch der Interessenten untereinander mussten Marktforscher ihre Prognose für das Marktwachstum im Jahr 2007 um 15 % senken. So wurde erwartet, dass man im Jahr 2007 mit rund 3,7 Milliarden US-Dollar für RFID-Services und -Lösungen weniger Umsatz machte.[29]

In industriellen Anwendungsfällen stellen die Kosten für die Chips und deren zu erwartende Degression nicht den entscheidenden Faktor dar. Viel mehr ins Gewicht fallen Installationskosten für banal Erscheinendes wie Verkabelungen, Steckdosen, Übertrager und Antennen etc., die in konventioneller Handwerksleistung installiert werden und bei denen deswegen kaum eine Kostendegression zu erwarten ist. Bei Wirtschaftlichkeitsvergleichen von RFID zu zum Beispiel Barcode waren und blieben es diese Infrastrukturkosten, welche durch die erwartbaren Rationalisierungserträge eines RFID-Systems nicht auszugleichen waren.[30][31]

Die Kosten für die Transponder (also die RFID-Chips) liegen zwischen 35€ pro Stück für aktive Transponder in kleinen Stückzahlen und absehbar 5 bis 10 Cent pro Stück für einfache passive Transponder bei Abnahme von mehreren Milliarden[32][33].

Studienmöglichkeiten

Eine Reihe von Hochschulen bietet Kurse zum Thema RFID innerhalb bestehender Ausbildungen an. Seit dem Sommersemester 2009 besteht die Möglichkeit, ein Masterstudium an der Hochschule Magdeburg-Stendal(FH) zu absolvieren.

Standards

  • Müllentsorgung
    • Trovan
    • BDE VKI (Abwandlung ISO 11784 / 11785)[34]
  • Tier-Identifizierung
    • ISO 11784
    • ISO 11785: FDX, HDX, SEQ
    • ISO 14223: advanced transponders
  • Contactless Smartcards
    • ISO/IEC 10536: close coupling Smartcards (Reichweite bis 1 cm)
    • ISO/IEC 14443: proximity coupling Smartcards (Reichweite bis 10 cm)
    • ISO/IEC 15693: vicinity Smartcards (Reichweite bis 1 m)
    • ISO/IEC 10373: Testmethoden für Smartcards
  • ISO 69873: für den Werkzeugbereich
  • Container-Identifizierung (Logistikbereich)
    • ISO 10374: Container-Identifizierung (Logistikbereich)
    • ISO 10374.2: “Freight Container –Automatic Identification” das sog. licence plate
    • ISO 17363: „Supply Chain application of RFID – Freight Containers“ das sog. shipment tag
    • ISO 18185: „Freight Container – Electronic Seals“ das sog. eSeal (elektronische Siegel)
  • VDI 4470: Diebstahlsicherung für Waren (EAS)
  • VDI 4472: Anforderungen an Transpondersysteme zum Einsatz in der Supply Chain
    • Blatt 1: Einsatz der Transpondertechnologie (Allgemeiner Teil)
    • Blatt 2: Einsatz der Transpondertechnologie in der textilen Kette (HF-Systeme) (veröffentlicht 2006)
    • Blatt 5: Einsatz der Transpondertechnologie in der Mehrweglogistik (Bearbeitung abgeschlossen)
    • Blatt 8: Leitfaden für das Management von RFID-Projekten (Bearbeitung abgeschlossen)
    • Blatt 10: Abnahmeverfahren zur Überprüfung der Leistungsfähigkeit von RFID-Systemen (Bearbeitung abgeschlossen)
  • Item Management (Verwaltung von Gegenständen)
    • ISO/IEC 18000 Information technology — Radio frequency identification for item management:
      • Part 1: Reference architecture and definition of parameters to be standardized
      • Part 2: Parameters for air interface communications below 135 kHz
      • Part 3: Parameters for air interface communications at 13,56 MHz
      • Part 4: Parameters for air interface communications at 2,45 GHz
      • Part 6: Parameters for air interface communications at 860 MHz to 960 MHz
      • Part 7: Parameters for active air interface communications at 433 MHz
  • Datenstrukturen und Reader-Kommunikationsprotokolle
    • EPCglobal (Electronic Product Code)
    • ISO/IEC 15961 AIDC RFID Data Protocol - Application interface
    • ISO/IEC 15962 AIDC RFID Data Protocol - Encoding Rules

Bedenken und Kritik

Im Zusammenhang mit den Bedenken zu RFID-Chips wird auch von „Spychips“ gesprochen.[35]

Technische Begrenzungen

Die Schwäche der RFID-Technik ist in der begrenzten Reichweite und in der Unschärfe der zu gewinnenden Information zu erkennen, da RFID-Chips keine direkte Information über die genaue Position und Bewegung liefern, sondern nur zur Identität. Ortsinformationen erhält man über den Umweg über die Kenntnis des Standorts des Lesegerätes. An Objekten angebrachte und von Personen mit sich geführte RFIDs könnten somit zu einer Gefahr für die Privatsphäre werden, da die unmerkbar gesendeten Daten potentiell personenbeziehbar sind (siehe unten). In dieser Hinsicht gleichen RFID einem eingeschalteten Mobiltelefon, dessen Standort anhand der nächstgelegenen Basisstation ermittelt werden kann.

Ungelöst ist derzeit noch das Problem der Entsorgung der Transponder als Elektronikschrott beim Masseneinsatz wie z. B. bei Supermarktartikeln. Unter anderem wird deshalb an neuen Materialien (z. B. auf Polymerbasis) geforscht, aber auch zur weiteren Senkung der Herstellungskosten sowie der Erschließung neuer Einsatzgebiete (z. B. in Geldscheinen und Kleidung eingearbeitete Transponder).[36]

Gefahren des Verlustes der informationellen Selbstbestimmung

Logo der StopRFID-Kampagne

Die Gefahr der RFID-Technik liegt zum Beispiel im Verlust der informationellen Selbstbestimmung, d. h. die einzelne Person hat durch die „versteckten“ Sender keinen Einfluss mehr darauf, welche Informationen preisgegeben werden. Deshalb ist der bevorstehende massenhafte Einsatz von RFID-Transpondern unter Datenschutz-Gesichtspunkten problematisch. Um dem zu entgehen, schlagen manche Kritiker die Zerstörung der RFID-Transponder nach dem Kauf vor. Dies könnte (ähnlich wie bei der Deaktivierung der Diebstahlsicherung) an der Kasse geschehen. Ein Nachweis, dass ein Transponder wirklich zerstört bzw. sein Speicher wirklich gelöscht wurde, ist für den Verbraucher in der Regel nicht möglich.[37].

Weiterhin ist die Integration zusätzlicher, nicht dokumentierter Speicherzellen oder Transponder denkbar. Für den Verbraucher wird ein RFID-Transponder so zur Black Box, weshalb manche eine lückenlose Überwachung des gesamten Produktionsprozesses fordern.

2003 hatte der Metro-Konzern einen Teil seiner Kundenkarten mit RFID-Transpondern ausgestattet ohne seine Kunden darauf hinzuweisen. Der Konzern wurde daraufhin mit der Negativ-Auszeichnung Big Brother Award bedacht. Metro setzt seine RFID-Versuche in seinem Future Store zwar fort, tauschte die betreffenden Kundenkarten jedoch um. Dies bewerten Datenschutz-Aktivisten als Folge ihrer Proteste. Generell kann sich ein Kunde gegen solche Praktiken erfolgreich wehren, wenn sie nicht heimlich geschehen. 2007 erhielt die Deutsche Bahn AG den genannten Big Brother Award, weil sie weiterhin – ohne die Kunden zu informieren – die BahnCard 100 mit RFID-Chips ausstattete.

Angriffs- bzw. Schutzszenarien

  • Man kann versuchen zu verhindern, dass die RFID-Transponder ihre Energie erhalten. Dazu kann man beispielsweise die Batterie herausnehmen oder die RFID-Transponder in einen Faradayschen Käfig stecken. Wenn RFID-Transponder induktiv auf tiefen Frequenzen um 100 kHz ankoppeln, sollte man eine Abschirmung aus magnetisierbaren Materialien wie Eisen oder MU-Metall verwenden. Bei hohen Frequenzen über 1 MHz genügt Umwickeln mit dünner Alufolie.
  • Man kann einfach die Antenne beschädigen. Bei größeren RFID-Transpondern kann man im Röntgenbild die Spiralen der Antenne deutlich erkennen. Durchtrennt man sie an einer Stelle, funktioniert der RFID-Transponder nicht mehr.
  • Die Induktivität einer Spulenantenne ist meist mit einem integrierten Kondensator auf die Arbeitsfrequenz abgestimmt (Schwingkreis). Durch Überkleben mit Alufolie wird die Resonanzfrequenz sehr deutlich erhöht und die Reichweite entsprechend verringert. Wenn dieser Schwingkreis die Sendefrequenz definiert, ist überhaupt kein Kontakt mehr möglich, weil das RFID auf viel zu hoher Frequenz sendet.
  • Das Aufkleben eines CHIPAXXS-Aufklebers kann die Benutzung des RFID-Chips verhindern, indem er die Kommunikation des RFID-Chips mit dem Lesegerät nur zulässt, wenn ein Taster auf dem Aufkleber gedrückt wird.[38]
  • Ein elektromagnetischer Impuls auf Transponder und Antenne zerstört diese ebenfalls und macht sie unbrauchbar. Als Beispiel dafür wurde auf dem Chaos Communication Congress 2005 der RFID-Zapper vorgestellt. Hierbei handelt es sich um ein Gerät, welches RFID-Transponder mittels eines elektromagnetischen Impulses deaktiviert. Einfacher ist es, den RFID einige Sekunden in den Mikrowellenherd zu legen. Die hohe Feldstärke zerstört die Elektronik. Dies birgt jedoch die Gefahr, dass nicht nur der Transponder, sondern auch das umgebende Trägermaterial (z. B. eine Kundenkarte) zerstört wird (beispielsweise durch Brandlöcher).
  • Mit jedem handelsüblichen Elektroschocker kann man einen RFID-Tag oder Chip einfach und effizient zerstören, indem man ihn nur kurz in die Funkenstrecke des Schockers bringt.
  • Aufwändig: Durch Aussendung eines Störsignals – bevorzugt auf der Frequenz, auf der auch der RFID-Transponder sendet – können die recht schwachen Signale des RFID-Transponders nicht mehr empfangen werden. Dieser Störsender kann aber seinerseits geortet werden.
  • Die Übertragung kann auch gestört werden, indem man eine große Zahl (mehrere hundert bis tausend) RFID-Transponder auf einen gemeinsamen Träger (Gehäuse) setzt. Wird das dadurch entstehende Gerät ("Jamming-Device") in den Lesebereich eines Lesegeräts gebracht, antworten die Tags alle gleichzeitig. Selbst wenn das Lesegerät mit Antikollisionsverfahren arbeitet, ist es bei einer derart großen Zahl von Transpondern doch überfordert und auch nicht mehr in der Lage, "echte" RFID-Tags (z. B. an Waren) zu erkennen. Solche Jamming-Vorrichtungen können als MP3-Player, Mobiltelefon, usw. getarnt sein.
  • Kaum effektiv: Wie beim Telefon (per Draht oder drahtlos) kann man auch RFID-Signale ausspähen. Auf diese Weise kann man bestenfalls mitlesen, was der RFID gerade zurücksendet.
  • Extrem aufwändig: RFID-Signale können manipuliert werden. Bei einem Speicherchip zur Authentifizierung werden daher auch Verschlüsselungsmethoden eingesetzt.
  • Auf der IEEE Conference of Pervasive Computing 2006 (Percom) in Pisa stellten Wissenschaftler um Andrew S. Tanenbaum eine Methode vor, wie mit Hilfe von manipulierten RFID-Chips die Back-end-Datenbanken von RFID-Systemen kompromittiert werden können. Sie bezeichnen ihre Arbeit selbst als weltweit ersten RFID-Virus seiner Art.[39]. Diese Darstellung wird allerdings mittlerweile von verschiedenen Stellen als zu theoretisch konstruiert angesehen.[40]

Umwelt und Recycling

Auf Umverpackungen aufgebrachte RFID-Tags können nach derzeitigem Kenntnisstand nicht so gut recycelt werden wie Umverpackungen ohne RFID-Tags. Sortenreines Verpackungsmaterial wie Altglas, Altpapier oder Kunststoff kann durch die schwierig abzutrennenden RFID-Chips aus Kupfer und weiteren Metallen verunreinigt werden. Mögliche Risiken von Verunreinigungen des Recylingmaterials durch RFID-Chips können aufwendigeres Recycling oder mindere Qualität der entstehenden Rohstoffe bedeuten.[41][42]

Ein weiterer Punkt ist der Ressourcenverbrauch von RFID-Transpondern. Kostbare Edelmetalle gehen mit ihnen diffus auf Deponien und in Müllverbrennungsanlagen verloren. Obwohl ein einziger Transponder nur eine geringe Menge Edelmetall enthält, würde durch eine große Anzahl von Chips (z. B. in Lebensmittelverpackungen) der Ressourcenverbrauch erheblich steigen.

Störung der Medizintechnik durch RFID

Im Journal of the American Medical Association wurde im Juni 2008 eine Studie[43] veröffentlicht, die nachweist, dass zahlreiche diagnostische Messungen durch die zur Auslesung erforderlichen elektromagnetischen Wellen von RFID verfälscht werden.[44] Geräte der Medizintechnik, die in jeder gut ausgestatteten Intensivmedizin-Station vorhanden sind, reagierten unterschiedlich empfindlich mit Messwert-Verzerrungen. „In einer Entfernung von einem Zentimeter bis sechs Metern kam es bei 34 von 123 Tests zu einer Fehlfunktion der medizinischen Geräte. In 22 Fällen wurden diese Störungen als gefährlich beurteilt, weil Beatmungsgeräte ausfielen oder selbsttätig die Atemfrequenz veränderten, weil Infusionspumpen stoppten oder externe Schrittmacher den Dienst versagten, weil ein Dialysegerät ausfiel oder der EKG-Monitor eine nicht vorhandene Rhythmusstörung anzeigte.“[45]

Siehe auch

Literatur

Übersicht

Monographien

  • N. Bartneck, V. Klaas, H. Schönherr: Prozesse optimieren mit RFID und Auto-ID. ISBN 978-3-89578-319-7.
  • Thorsten Blecker, George Q. Huang (Hrsg.): RFID in Operations and Supply Chain Management. Erich Schmidt Verlag, Berlin 2008, ISBN 978-3-503-10088-0.
  • D. Dreher: Der Einsatz von Radio Frequency Identification in der Logistik. ISBN 3-638-65794-9.
  • F. Gillert, W. Hansen: RFID – für die Optimierung von Geschäftsprozessen. ISBN 3-446-40507-0.
  • Markus Hansen, Sebastian Meissner: Identification and Tracking of Individuals and Social Networks using the Electronic Product Code on RFID Tags. IFIP Summer School, Karlstad 2007. Folien
  • W. Franke, W. Dangelmaier: RFID – Leitfaden für die Logistik. ISBN 3-8349-0303-5.
  • C. Kern: Anwendung von RFID-Systemen. 2. Auflage. 2006, ISBN 3-540-27725-0.
  • C. Köster: Radio Frequency Identification. Einführung, Trends, gesellschaftliche Implikationen. ISBN 3-8364-0162-2.
  • S. Kummer, M. Einbock, C. Westerheide: RFID in der Logistik. Handbuch für die Praxis. ISBN 3-901983-59-7.
  • B. Lietke, M. Boslau, S. Kraus: RFID-Technologie in der Wertschöpfungskette. In: Wirtschaftswissenschaftliches Studium (WiSt) – Zeitschrift für Ausbildung und Hochschulkontakt. (ISSN 0340-1650), Verlage C.H. Beck/Vahlen, 35. Jg., Nr. 12, S. 690–692
  • Christoph Rosol: RFID. Vom Ursprung einer (all)gegenwärtigen Kulturtechnologie. ISBN 978-3-86599-041-9.
  • R. Schoblick: RFID. ISBN 3-7723-5920-5.
  • E. Schuster, S. Allen, D. Brock: Global RFID. The Value of the EPCglobal Network for Supply Chain Management. ISBN 3-540-35654-1.
  • W. Seifert, J. Decker (Hrsg.): RFID in der Logistik. ISBN 3-87154-322-5.
  • Klaus Finkenzeller: RFID-Handbuch: Grundlagen und praktische Anwendungen von Transpondern, kontaktlosen Chipkarten und NFC. 5. Auflage. München 2008, 978-3-446-41200-2.

Einzelnachweise

  1. zdnet.de: RFID-Chips aus dem Drucker 9. Februar 2005
  2. Christoph Rosol: RFID. Vom Ursprung einer (all)gegenwärtigen Kulturtechnologie.
  3. Bundestag: Funkchips – Die Radio Frequency Identification (RFID). 24. Mai 2007
  4. AIM Global: Shrouds of Time – The History of RFID oder Shrouds of Time – The History of RFID
  5. Auto-ID Center
  6. heise online: Hitachi treibt Miniaturisierung von RFID-Tags voran. 16. Februar 2007
  7. Funketiketten steuern die Fertigung - RFID-Systeme nach dem EPCglobal-Standard erobern die Produktion. Siemens A&D Kompendium 2009/2010, abgerufen am 20. Oktober 2010
  8. ISO/IEC 18000-1:2008 Information technology – Radio frequency identification for item management – Part 1: Reference architecture and definition of parameters to be standardized
  9. ISO/IEC 15459-3:2006 Information technology – Unique identifiers – Part 3: Common rules for unique identifiers
  10. ISO/IEC 15459-4:2008 Information technology – Unique identifiers – Part 4: Individual items
  11. „Forschung aktuell“, Deutschlandfunk
  12. z. B. Finkenzeller 2008, S. 273.
  13. tecCHANNEL.de: RFID-Chip soll Euro-Blüten verhindern, 23. Mai 2003
  14. Hitachi: μ-Chip – The World’s Smallest RFID IC. Stand: August 2006
  15. Süddeutsche: Funk Bezahlsystem, 19. Juni 2011
  16. heise online: Patientenidentifikation mit RFID-Chips. 27. August 2006
  17. RFID-Einsatz im Gesundheitswesen (PDF, 634 KB)
  18. RFID Journal: http://www.rfidjournal.com/article/articleview/2032/1/1/
  19. heise online: Erste RFID-Markierungen auf Levi’s Jeans. 28. April 2006
  20. Vgl. C. Goebel, R. Tröger, C. Tribowski, O. Günther, R. Nickerl: RFID in the Supply Chain: How to obtain a positive ROI. The case of Gerry Weber. In: Proceedings of the International Conference on Enterprise Information Systems (ICEIS). Mailand 2009
  21. Vgl. J. Müller, R. Tröger, R. Alt, A. Zeier: Gain in Transparency vs. Investment in the EPC Network – Analysis and Results of a Discrete Event Simulation Based on a Case Study in the Fashion Industry. In: Proceedings of the 7th International Joint Conference on Service Oriented Computing. SOC-LOG Workshop, Stockholm 2009
  22. Vgl. RFID Journal: Gerry Weber sews in RFID's Benefits. 2009
  23. http://www.banfield.net/about/article.asp?id=34 ISO 134,2 und der proprietäre historische 125-kHz-RFID-Standard (engl.)
  24. Briten empört: 500.000 Mülltonnen heimlich verwanzt. Spiegel Online, 26. August 2006
  25. Germans plant bugs in our wheelie bins. Mail on Sunday, 26. August 2006
  26. RFID tag sales in 2005 – how many and where. IDTechEx, 21. Dezember 2005
  27. SCM – Es funkt im RFID-Markt. CIO Online, 25. September 2006
  28. Der RFID-Boom hat gerade erst begonnen. Computerwoche, 24. Juli 2006
  29. Marktforscher sieht 2007 weniger RFID-Wachstum. silicon.de, 11. August 2006
  30. Mira Schnell: Einsatzmöglichkeiten der RFID-Technologie innerhalb der Materiallogistik am Beispiel der Fahrzeugfertigung der Ford-Werke GmbH in Köln. FH Aachen, Aachen 2006.
  31. Michael Tegelkamp: Möglichkeiten des RFID-Einsatzes im internen Warenfluss eines mittelständischen Süßwarenherstellers. FH Aachen, Aachen 2005.
  32. Kosten laut RFID-Basis.de
  33. Kosten laut RFID-Journal.de
  34. BDE-Transponder
  35. Katherine Albrecht und Liz McIntyre: SPYCHIPS – How Major Corporations and Government Plan to Track Your Every Move with RFID. Veröffentlicht von Nelson Current, A Subsidiary of Thomas Nelson, Inc., 501 Nelson Place, Nashville, TN, USA, 2005
  36. Übersehene Gefahr: RFID-Chips verseuchen das Trinkwasser. ZDNet.de, 5. Dezember 2005
  37. Kritik aus Sicht der Verbraucher: Die StopRFID-Seiten des FoeBuD e. V.
  38. [1]
  39. Is Your Cat Infected with a Computer Virus?, Website des RFID-Virus
  40. Roaming charges: Pet-embedded RFID chips bring down Las Vegas!, Larry Loeb, 18. April 2006
  41. Problem-Müll Funkchip, wissenschaft.de, 5. Februar 2008
  42. Studie: Massenhafter RFID-Einsatz könnte Recycling verschlechtern, heise.de, 9. November 2007
  43. Zusammenfassung der JAMA-Studie
  44. JAMA Band 299, 2008. S. 2884-2890
  45. Studie: RFID-Etikette können medizinische Geräte empfindlich stören. Deutsches Ärzteblatt, 25. Juni 2008

Weblinks

 Commons: RFID – Sammlung von Bildern, Videos und Audiodateien
Wikibooks Wikibooks: RFID-Technologie – Lern- und Lehrmaterialien

Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • RFID — (siglas de Radio Frequency IDentification, en español Identificación por radiofrecuencia) es un método de almacenamiento y recuperación de datos remoto que usa dispositivos denominados etiquetas o tags RFID. Una etiqueta RFID es un dispositivo… …   Enciclopedia Universal

  • RFID — UK US noun [U] ► COMMERCE ABBREVIATION for radio frequency identification: a system for finding the position of a product using radio signals. RFID can be used to check where a product is in the supply chain: »RFID technology allows large stores… …   Financial and business terms

  • RFID — EPC RFID метка, используемая в торговой сети Wal Mart RFID (англ. Radio Frequency IDentification, радиочастотная идентификация)  способ автоматической идентификации объектов, в котором посредством радиосигналов считываются или… …   Википедия

  • RFID — Una etiqueta RFID EPC en uso por Wal Mart Chip Rfid pasivo encapsulado para uso en uniformes y sector textil. Especial resistencia para lavanderías (ver sector textil). RFID (siglas de …   Wikipedia Español

  • RFID — Radio identification Une puce de radio identification EPC utilisée par Wal Mart La radio identification plus souvent désignée pa …   Wikipédia en Français

  • Rfid — Radio identification Une puce de radio identification EPC utilisée par Wal Mart La radio identification plus souvent désignée pa …   Wikipédia en Français

  • RFID 2.0 — Internet des objets Internet des objets est un néologisme qui se rapporte à l extension de l internet à des choses et à des lieux dans le monde réel. Alors que l internet que nous connaissons ne se prolonge pas au delà du monde électronique, l… …   Wikipédia en Français

  • RFID — abbrev Radio Frequency Identification, a method of storing and retrieving information by means of tiny tags that can transmit and receive radio signals * * * RFID UK [ˈɑː(r)fɪd] US [ˈɑrfɪd] noun [uncountable] business a technology that uses… …   Useful english dictionary

  • RFID — UK [ˈɑː(r)fɪd] / US [ˈɑrfɪd] noun [uncountable] business a technology that uses labels that produce radio signals to identify things such as goods, farm animals and vehicles. RFID has replaced bar codes in some shops …   English dictionary

  • RFID Journal — is an independent media company devoted solely to radio frequency identification (RFID) and its many business applications. A bi monthly print publication and online news and information source, the Journal offers news, features that address key… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”