- Radon
-
Eigenschaften Allgemein Name, Symbol, Ordnungszahl Radon, Rn, 86 Serie Edelgase Gruppe, Periode, Block 18, 6, p Aussehen farblos CAS-Nummer 10043-92-2 Massenanteil an der Erdhülle 6,1 · 10−11 ppm[1] Atomar [2] Atommasse 222 u Kovalenter Radius 150 pm Van-der-Waals-Radius 220[3] pm Elektronenkonfiguration [Xe] 4f14 5d10 6s2 6p6 1. Ionisierungsenergie 1037 kJ/mol Physikalisch [2] Aggregatzustand gasförmig Kristallstruktur kubisch flächenzentriert Dichte 9,73 kg · m−3[4] Magnetismus diamagnetisch Schmelzpunkt 202 K (−71 °C) Siedepunkt 211,3 K (−61,8 °C) Molares Volumen (fest) 50,50 · 10−6 m3/mol Verdampfungswärme 16,4 kJ/mol Schmelzwärme 2,89 kJ/mol Wärmeleitfähigkeit 0,00364 W/(m · K) Isotope Isotop NH t1/2 ZM ZE (MeV) ZP 210Rn 2,4 h α 6,159 206Po ε 2,374 210At 211Rn 14,6 h ε 2,892 211At α 5,965 207Po 212Rn 23,9 min α 6,385 208Po ··· ··· ··· ··· ··· ··· 217Rn 0,54 ms α 7,889 213Po 218Rn 0,35 ms α 7,263 214Po 219Rn 1 %
3,96 s α 6,946 215Po 220Rn 9 %
55,6 s α 6,405 216Po 221Rn 25,0 min β− 221Fr α 217Po 222Rn 90 %
3,824 d α 5,590 218Po 223Rn 23,2 min β− 1,000 223Fr 224Rn 107 min β− 224Fr Weitere Isotope siehe Liste der Isotope Sicherheitshinweise Gefahrstoffkennzeichnung [5] keine Einstufung verfügbar R- und S-Sätze R: siehe oben S: siehe oben weitere Sicherheitshinweise Radioaktivität
Radioaktives ElementSoweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.Radon (wie Radium von lat. radius „Strahl“, wegen seiner Radioaktivität und lat. emanation „Ausfluss“) ist ein radioaktives chemisches Element mit dem Elementsymbol Rn und der Ordnungszahl 86. Im Periodensystem steht es in der 8. Hauptgruppe und zählt damit zu den Edelgasen.
Alle Isotope des Radons sind radioaktiv. Das stabilste Isotop ist 222Rn mit einer Halbwertzeit von 3,8 Tagen; es entsteht als Zerfallsprodukt aus Radium. Zwei andere natürliche Isotope, 220Rn und 219Rn, tragen die historischen Namen Thoron (Tn) bzw. Actinon (An). Daneben hat Radon noch zwei weitere natürliche Isotope, die aus verschiedenen Gründen praktisch in der Erdatmosphäre nicht vorkommen. Da sich die drei relativ häufigen Isotope von Radon in Häusern (im Gegensatz zur natürlichen Umgebung) in schlecht belüfteten Räumen ansammeln können, stellen sie eine Gefahr für die Gesundheit und eine erhebliche Radonbelastung dar. Weil sie allerdings Edelgase sind und damit bindungsträge, ist der Gefahrenherd letztlich nicht das Radon selbst, sondern seine Zerfallsprodukte (Tochternuklide). Radon hat am gesamten Strahlungsaufkommen auf der Erdoberfläche den bei weitem größten Anteil (durchschnittliche effektive Dosis pro Person in Deutschland: etwa 1,1 mSv/Jahr), gefolgt von der direkten terrestrischen Strahlung mit ca. 0,4 mSv/Jahr, der direkten kosmischen Strahlung und den natürlicherweise in der Nahrung vorkommenden radioaktiven Stoffen mit je etwa 0,3 mSv/Jahr.
Inhaltsverzeichnis
Geschichte
Radon wurde 1900 von Friedrich Ernst Dorn entdeckt.[6] Dorn nannte es Radium-Emanation („aus Radium Herausgehendes“). 1908 isolierten William Ramsay und Robert Whytlaw-Gray eine ausreichende Menge des Gases, um seine Dichte zu bestimmen. Weil es im Dunklen Licht abgab, nannten sie es Niton, nach dem lateinischen Wort nitens „leuchtend“.[7] Seit 1923 ist die Bezeichnung Radon gebräuchlich.
Vorkommen
Im Mittel findet sich in der Erdatmosphäre ein Radonatom auf 1021 Moleküle in der Luft. Radon ist damit der seltenste Bestandteil der Luft. Die Quellen des Radons sind im Gestein und im Erdreich in Spuren vorhandenes Uran und Thorium, die langsam zerfallen. In deren Zerfallsreihen wird das Radon gebildet. Dieses diffundiert dann aus den obersten Bodenschichten in die Atmosphäre, ins Grundwasser, in Keller, Rohrleitungen, Höhlen und Bergwerke. Radon aus tiefergelegenen Erdschichten erreicht nicht die Oberfläche, da es bereits auf dem Weg dorthin zerfällt.
Radon kommt deswegen vermehrt in Gebieten mit hohem Uran- und Thoriumgehalt im Boden vor. Dies sind hauptsächlich die Mittelgebirge aus Granitgestein, in Deutschland vor allem der Schwarzwald, der Bayerische Wald, das Fichtelgebirge und das Erzgebirge, in Österreich das Granitbergland im Waldviertel und Mühlviertel. Hier finden sich vor allem saure und helle (leukokrate) Gesteine. Insgesamt kommt Radon in Süddeutschland in wesentlich höherer Konzentration vor als in Norddeutschland. In der Schweiz ist vor allem der Kanton Tessin ein ausgeprägter Radon-Kanton.[8]
Manche Quellen besitzen einen bedeutenden Radonanteil, Bad Gastein mit den Gasteiner Heilstollen ist einer der bekanntesten Kurorte mit hohem Radonvorkommen. Ebenso auch Bad Steben, Meran, Sibyllenbad, Menzenschwand, Bad Schlema, Bad Brambach, Bad Kreuznach, Bad Zell und Ischia im Golf von Neapel.
Weitere Orte, an denen Radon in relativ hohen Konzentrationen vorkommt, sind neben Uranerz-, Flussspat- oder Bleibergwerken auch Laboratorien und Fabriken, in denen Uran, Radium oder Thorium gehandhabt werden.
Eigenschaften
Wie alle Edelgase ist Radon chemisch fast nicht reaktiv; nur mit Fluor reagiert es zu Radonfluorid. Unter Normalbedingungen ist Radongas farblos, geruchlos, geschmacklos; beim Abkühlen unter seinen Schmelzpunkt wird es leuchtend gelb bis orange. Als Füllung in Gasentladungsröhren erzeugt Radon rotes Licht.[7] Außerdem ist es mit 9,73 kg·m−3 das mit Abstand dichteste elementare Gas.
Wie sein leichteres gruppenhomologes Xenon ist Radon in der Lage, echte Verbindungen zu bilden. Es kann erwartet werden, dass diese stabiler und vielfältiger sind als beim Xenon. Das Studium der Radonchemie wird durch die hohe spezifische Aktivität des Radons sehr behindert, weil die energiereiche Strahlung zur Selbstzersetzung (Autoradiolyse) der Verbindungen führt. Eine Chemie mit wägbaren Mengen dieser Stoffe ist daher nicht möglich. Ab-initio- und Dirac-Hartree-Fock-Berechnungen beschreiben einige Eigenschaften des noch nicht synthetisierten Radonhexafluorids (RnF6).[9]
Als radioaktives Gas mit sehr hoher Dichte kann sich Radon in Gebäuden, besonders in Kellern und den unteren Stockwerken, in physiologisch bedeutsamen Mengen ansammeln.
Verwendung
In der medizinischen Radonbalneologie soll Radon das menschliche Immunsystem stimulieren und dadurch Krankheiten lindern. Aus naturwissenschaftlicher Sicht ist die positive Wirkung des Radons nicht nachgewiesen. Das Radon gelangt durch die Inhalation hochaktiver radonhaltiger Luft oder in Wannenbädern durch die Haut in den menschlichen Organismus. Unter Aspekten des Strahlenschutzes ist die zusätzliche Strahlenexposition durch Radon zwar gering, jedoch nicht vernachlässigbar.
Das Umweltbundesamt sieht für die Radonbalneologie Kontraindikationen für die Anwendung bei Kindern und Jugendlichen sowie Schwangeren.[10]
In der Hydrologie kann der Radongehalt eines Gewässers Aufschluss über dessen Grundwasserversorgung geben. Regenwasser enthält fast kein Radon, Oberflächenwasser ist ebenfalls nahezu radonfrei, da Radon von dort schnell in die Atmosphäre übergeht. Grundwasser hingegen weist Radonkonzentrationen auf, die um Größenordnungen über denen von Oberflächenwässern liegen. Daher ist ein hoher Gehalt an Radon im Oberflächenwasser ein Anzeiger für den Einfluss von Grundwasser.
In mehreren Ländern stützt sich die Erdbebenvorhersage auch auf Radonmessungen. Leichte Erschütterungen des Erdreiches sorgen für eine schnellere Ausbreitung des in der Erde entstehenden Radongases als unter normalen Bedingungen. In unterirdischen Hohlräumen steigt dadurch die Radonkonzentration messbar an.[11]
Radonmessungen helfen bei der Suche nach Uranerz-Lagerstätten. Die Größe der Radonexhalation, also die Menge des aus dem Boden austretenden Radongases, hängt vom Radiumgehalt und der Porosität des Untergrundes ab. Während der Uranprospektion werden auf großen Gebieten einfache, passiv arbeitende Radonmessgeräte auf der Erdoberfläche oder dicht darunter ausgelegt. Überdurchschnittliche Messwerte weisen auf höhere Uran/Radium-Konzentrationen und Bodenporosität und damit auf eine mögliche Lagerstätte hin. Es gibt geologische Prozesse, die Uran und das daraus entstandene Radium voneinander trennen. Deshalb ist der Hinweis auf Uran nicht eindeutig.
Isotope
Es sind 34 Isotope und 4 Kernisomere des Radons bekannt, die alle radioaktiv sind. Das bisher schwerste Radonisotop 229wurde 2008 im CERN-Isotopenlabor ISOLDE durch den Beschuss von Urankernen mit hochenergetischen Protonen erhalten.[12] Seine Halbwertszeit beträgt 12 Sekunden.
In den drei natürlichen Zerfallsketten kommen nur die fünf Isotope 223Rn, 222Rn, 220Rn, 219Rn und 218Rn vor. Eines der natürlichen Isotope ist ein Betastrahler und vier sind Alphastrahler. Daneben entsteht in der künstlichen Neptunium-Reihe der Alphastrahler 217Rn.
- Radon 223Rn entsteht in einer Seitenkette der Uran-Actinium-Reihe beim Zerfall des Radium 227Ra, das selbst nur mit einer Wahrscheinlichkeit von 0,000001 % aus Thorium 231Th entsteht. Es ist deshalb so selten, dass es fast nicht in der Erdatmosphäre vorkommt. Radon 223Rn zerfällt mit einer Halbwertszeit von 23,2 Minuten durch Betastrahlung in Francium 223Fr. Radiologisch ist es durch seine Seltenheit bedeutungslos.
- Radon 222Rn ist das Zerfallsprodukt des Radiumisotops 226Ra in der Uran-Radium-Reihe. Es ist das stabilste Radonisotop und zerfällt unter Aussendung von Alphateilchen mit einer Halbwertszeit von 3,823 Tagen zu Polonium 218Po. Wenn Strahlenschützer von Radon ohne weitere Bezeichnung sprechen, meinen sie 222Rn. Allgemein angewendet (z. B. Radon-Messung), schließt der Begriff auch die kurzlebigen Zerfallsprodukte ein.
- Radon 220Rn ist ein Zerfallsprodukt des Radium 224Ra in der Thorium-Reihe. Strahlenschützer bezeichnen es oft als Thoron. Seine Halbwertszeit beträgt 55,6 Sekunden; es zerfällt ebenfalls unter Aussendung von Alphateilchen zu Polonium 216Po.
- Radon 219Rn ist ein Zerfallsprodukt des Radium 223Ra in der Uran-Actinium-Reihe und trägt auch die Bezeichnung Actinon. Seine Halbwertszeit beträgt 3,96 Sekunden; es zerfällt ebenfalls unter Aussendung von Alphateilchen zu Polonium 215Po. Radiologisch ist es praktisch bedeutungslos.
- Radon 218Rn entsteht in einer Seitenkette der Uran-Radium-Reihe beim Zerfall des Astat 218At mit einer Wahrscheinlichkeit von 0,1 %, das Astat selbst entsteht nur mit einer Wahrscheinlichkeit von 0,02 % aus Polonium 218Po. Radon 218Rn zerfällt mit einer Halbwertszeit von nur 35 Millisekunden unter Aussendung von Alphateilchen in Polonium 214Po. Durch seine extrem kurze Halbwertszeit hat es praktisch keine Zeit, um in die Erdatmosphäre zu kommen. Radiologisch ist es deshalb bedeutungslos.
- Radon 217Rn entsteht in einer Seitenkette der Neptunium-Reihe beim Zerfall des Radium 221Ra, das Radium selbst entsteht nur mit einer Wahrscheinlichkeit von 0,1 % aus Francium 221Fr. Die restlichen 99,9 % des 221Fr zerfällt zu Astat 217At, das mit 0,01 % Wahrscheinlichkeit ebenfalls zu Radon 217Rn zerfällt. Das Radonisotop entsteht daher auf zwei Wegen in geringer Menge in der Neptunium-Reihe. Radon 217Rn zerfällt mit einer Halbwertszeit von nur 54 Millisekunden unter Aussendung von Alphateilchen in Polonium 213Po. Es kommt natürlich nicht vor.
Gewinnung
Wenn die oben genannten radioaktiven Substanzen zu Radon zerfallen, kann dieses ausgasen. In einem Labor kann man das aus einer Probe entweichende Radon auffangen und durch Verflüssigen von der Restluft trennen.[7] Beim Zerfall eines Gramms Radium 226Ra entstehen 0,64 cm3 Radon 222Rn pro Monat[13].
Sicherheitshinweise
Einstufungen nach der Gefahrstoffverordnung liegen nicht vor, weil diese nur die chemische Gefährlichkeit umfassen, die bei Edelgasen nicht auftritt. Wichtig sind die auf der Radioaktivität beruhenden Gefahren.
Nach Studien der Weltgesundheitsorganisation nimmt das Auftreten von Lungenkrebs signifikant bei Strahlungswerten von 100–200 Bq pro Kubikmeter Raumluft zu. Die Wahrscheinlichkeit für Lungenkrebs steigt danach jeweils mit der Zunahme um weitere 100 Bq/m3 in der Raumluft um 10 %.[14]
Siehe auch
Einzelnachweise
- ↑ Harry H. Binder: Lexikon der chemischen Elemente, S. Hirzel Verlag, Stuttgart 1999, ISBN 3-7776-0736-3.
- ↑ Die Werte für die Eigenschaften (Infobox) sind, wenn nicht anders angegeben, aus www.webelements.com (Radon) entnommen.
- ↑ Manjeera Mantina, Adam C. Chamberlin, Rosendo Valero, Christopher J. Cramer, Donald G. Truhlar: Consistent van der Waals Radii for the Whole Main Group. In: J. Phys. Chem. A. 2009, 113, S. 5806–5812, doi:10.1021/jp8111556.
- ↑ David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics, 90. Auflage, Taylor & Francis, 2009, ISBN 978-1-4200-9084-0, p. 4-69.
- ↑ In Bezug auf seine Gefährlichkeit wurde das Element von der EU noch nicht eingestuft, eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
- ↑ Dorn, E: Über die von radioaktiven Substanzen ausgesandte Emanation. In Abh. naturf. Ges. Halle 1900, 23, 1-15. urn:nbn:de:hebis:30-1090447
- ↑ a b c Klaus Hoffmann: Kann man Gold machen? Gauner, Gaukler und Gelehrte. Aus der Geschichte der chemischen Elemente. Urania-Verlag, Leipzig • Jena • Berlin 1979, keine ISBN, S. 67.
- ↑ Jahresbericht 2004 der Abteilung Strahlenschutz des Schweizer Bundesamtes für Gesundheit, S.15
- ↑ Michael Filatov, Dieter Cremer: „Bonding in Radon Hexafluoride: An Unusual Relativistic Problem?“, in: Phys. Chem. Chem. Phys., 2003, 5, S. 1103–1105; doi:10.1039/b212460m.
- ↑ A. Erzberger, E. Schwarz, T. Jung. Radonbalneologie. Umweltmedizinischer Informationsdienst 3/2000. Bundesamt für Strahlenschutz, Institut für Strahlenhygiene. S. 9.
- ↑ Deutschlandfunk, Forschung Aktuell: Das Orakel in den Abruzzen, 20. Januar 2009.
- ↑ D. Neidherr, G. Audi, D. Beck, K. Blaum, Ch. Böhm, M. Breitenfeldt, R. B. Cakirli, R. F. Casten, S. George, F. Herfurth, A. Herlert, A. Kellerbauer, M. Kowalska, D. Lunney, E. Minaya-Ramirez, S. Naimi, E. Noah, L. Penescu, M. Rosenbusch, S. Schwarz, L. Schweikhard, and T. Stora: Discovery of 229Rn and the Structure of the Heaviest Rn and Ra Isotopes from Penning-Trap Mass Measurements, in: Phys. Rev. Lett., 2009, 102, 112501; doi:10.1103/PhysRevLett.102.112501.
- ↑ Radon bei webelements.com
- ↑ PDF des Bundesumweltministeriums
Weblinks
Commons: Radon – Album mit Bildern und/oder Videos und AudiodateienWiktionary: Radon – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen- Radon (UmweltWissen – Bayerisches Landesamt für Umwelt; PDF-Datei; 377 kB)
- Ionisierende Strahlung > Radon Bundesamt für Strahlenschutz
- Interaktive Radonpräsentation, Sächsisches Staatsministerium für Umwelt und Landwirtschaft
- Interaktive Radonpräsentation, Landesamt für Geologie und Bergbau Rheinland-Pfalz
- Pressemitteilung des Bundesumweltministeriums vom 19. Juni 2007 zur Wirkung der Strahlung auf den Menschen u.a. durch radonbedingten Lungenkrebs (jährlich ca. 1.800 Tote durch Radon in Deutschland)
- Radon Info
- Grundlagen, Metrologie und Messgrößen zum Thema Radon in der Physikalisch-Technischen Bundesanstalt (PTB)
Wikimedia Foundation.