Statistisches Modell

Statistisches Modell

In der Wahrscheinlichkeitstheorie gibt die Wahrscheinlichkeitsverteilung an, wie sich die Wahrscheinlichkeiten auf die möglichen Zufallsergebnisse, insbesondere die möglichen Werte einer Zufallsvariable, verteilen.

Die Wahrscheinlichkeitsverteilung erfasst den Zufall in einem stochastischen Vorgang quantitativ und stellt das theoretische Gegenstück zur empirischen Häufigkeitsverteilung dar, die sich aus der Analyse von Daten (Messwerten) ergibt.

Man unterscheidet zwischen diskreten Verteilungen, die sich auf eine endliche oder abzählbare Menge konzentrieren, und stetigen (kontinuierlichen) Verteilungen, die sich auf größere Bereiche erstrecken und bei denen einzelne Punkte die Wahrscheinlichkeit 0 haben. Beispiele für diskrete Verteilungen sind die Binomialverteilung und die Hypergeometrische Verteilung, die die Anzahl der Erfolge beim Ziehen aus einer Urne mit und ohne Zurücklegen beschreiben, sowie die Poisson-Verteilung, die sich aus der Binomialverteilung ergibt, wenn man die Erfolgswahrscheinlichkeit immer weiter reduziert und gleichzeitig die Anzahl der Ziehungen um denselben Faktor erhöht. Ein prototypischer Vertreter von stetigen Verteilungen, durch den sich viele reale Situationen approximativ beschreiben lassen und der mathematisch einfach zu behandeln ist, ist die Normalverteilung, bei der die Wahrscheinlichkeiten einer Gaußschen Glockenkurve folgen.

Inhaltsverzeichnis

Beschreibung von Wahrscheinlichkeitsverteilungen

Zur Beschreibung von Wahrscheinlichkeitsverteilungen werden unter anderem Wahrscheinlichkeitsfunktionen, Dichtefunktionen, Verteilungsfunktionen und Wahrscheinlichkeitsmaße verwendet.

Der mathematisch allgemeinste Begriff, der nicht nur diskrete und stetige Verteilungen, sondern auch Mischungen von solchen umfasst und für beliebige Ergebnismengen Gültigkeit besitzt, ist das Wahrscheinlichkeitsmaß, d. h. eine Funktion μ, die jedem Ereignis A eine Wahrscheinlichkeit μ(A) zuordnet. In der Wahrscheinlichkeitstheorie versteht man unter der Verteilung einer Zufallsvariable X das Wahrscheinlichkeitsmaß \mu(A) = P(X\in A), welches die Wahrscheinlichkeiten erfasst, mit denen die Zufallsvariable bestimmte Werte annimmt (Bildmaß von X).

Diskrete Verteilungen lassen sich durch eine Wahrscheinlichkeitsfunktion (oder Zähldichte) ρ(x) beschreiben, die die Wahrscheinlichkeiten für die einzelnen Werte x angibt. Der Zusammenhang zum Wahrscheinlichkeitsmaß ergibt sich aus ρ(x) = μ({x}) bzw. ρ(x) = P(X = x). Die Wahrscheinlichkeiten für beliebige Ereignisse A erhält man als Summen:

 P(X \in A) \, = \, \sum_{x\in A} \rho(x)    bzw.     \mu(A) \, = \, \sum_{x\in A} \rho(x)

Bei stetigen Verteilungen lassen sich Wahrscheinlichkeiten nicht als Summen von Einzelwahrscheinlichkeiten berechnen, da diese stets gegen 0 streben. Sie lassen sich jedoch oft als Integrale über eine Dichtefunktion (oder Wahrscheinlichkeitsdichte) f(x) darstellen (stetige Verteilungen im engeren Sinne):

P(a \le X \le b) \, = \, \int_a^b f(x)\,dx    bzw.    \; \mu([a,b]) \, = \, \int_a^b f(x)\,dx

Verteilungen auf den reellen Zahlen können allgemein durch die (kumulative) Verteilungsfunktion (engl. cumulative distribution function, cdf) F(x) beschrieben werden, die angibt, mit welcher Wahrscheinlichkeit die Zufallsvariable einen Wert kleiner oder gleich x annimmt:

F(x) \, = \, P(X \le x)

bzw.

F(x) \, = \, \mu((-\infty, x])

Wenn die Verteilungsfunktion differenzierbar ist, ist ihre Ableitung eine Dichtefunktion der Verteilung.

Wichtige stetige Wahrscheinlichkeitsverteilungen

Drei Glockenkurven (Dichtefunktion normalverteilter Zufallsgrößen)
Dichten verschiedener beta-verteilter Zufallsgrößen
Dichtefunktion der F-Verteilung mit ausgewählten Freiheitsgraden m und n

Die meisten Wahrscheinlichkeitsverteilungen lassen sich bei großer Stichprobe zur Normalverteilung überleiten. Viele natur-, wirtschafts- und ingenieurswissenschaftliche Vorgänge lassen sich durch die Normalverteilung entweder exakt oder wenigstens in sehr guter Näherung beschreiben (vor allem Prozesse, die in mehreren Faktoren unabhängig voneinander in verschiedene Richtungen wirken).

Die Chi-Quadrat-Verteilung ist eine so genannte Stichprobenverteilung, die bei der Schätzung von Verteilungsparametern, beispielsweise der Varianz, Anwendung findet.

Über der gesamten Zahlengeraden:

Für konvexe Kombinationen mehrerer Verteilungen siehe Mischverteilung, dessen Sonderfall

darstellt.

Über einem endlichen Intervall [a,b], im einfachsten Fall [0,1]:

Über einem halbseitig unendlichen Intervall, üblicherweise als [0,∞] angenommen:

Verteilungsklassen

Verteilungsklasse oder Verteilungsfamilie bezeichnet Verteilungen gleichen Typs. Man unterscheidet sie anhand unterschiedlicher mathematischer Eigenschaften. Man unterscheidet parametrische Klassen und nicht-parametrische Klassen. Zur Klasse der parametrischen Klassen gehört die Exponentielle Familie. Sie vereinigt:

Die Familie der Beta-Verteilungen wird "die zur Binomial-Verteilung “konjugierte” Verteilungsklasse" genannt. Die Panjer-Verteilung vereint Negative Binomialverteilung, Binomialverteilung und Poisson-Verteilung in einer Verteilungsklasse. Man sondiert auch die Verteilungsfamilie mit einen monotonen Dichtequotienten, die Dominierte Verteilungsfamilie, und Alpha-stabile Verteilungen auf Grund von unterschiedlichen Gesichtspunkten.

Siehe auch

Literatur

  • Erich Härtter: Wahrscheinlichkeitsrechnung für Wirtschafts- und Naturwissenschaftler. Vandenhoeck & Ruprecht, Göttingen 1974, ISBN 3-525-03114-9

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • statistisches Modell des Kerns — statistinis branduolio modelis statusas T sritis fizika atitikmenys: angl. statistical model of nucleus; statistical nuclear model vok. statistisches Kernmodell, n; statistisches Modell des Kerns, n rus. статистическая модель ядра, f pranc.… …   Fizikos terminų žodynas

  • statistisches Modell — statịstisches Modẹll,   Physik: das Thomas Fermi Modell …   Universal-Lexikon

  • statistisches Kernmodell — statistinis branduolio modelis statusas T sritis fizika atitikmenys: angl. statistical model of nucleus; statistical nuclear model vok. statistisches Kernmodell, n; statistisches Modell des Kerns, n rus. статистическая модель ядра, f pranc.… …   Fizikos terminų žodynas

  • Statistisches Lernen — Maschinelles Lernen ist ein Oberbegriff für die „künstliche“ Generierung von Wissen aus Erfahrung: Ein künstliches System lernt aus Beispielen und kann nach Beendigung der Lernphase verallgemeinern. Das heißt, es lernt nicht einfach die Beispiele …   Deutsch Wikipedia

  • Statistisches Lernverfahren — Maschinelles Lernen ist ein Oberbegriff für die „künstliche“ Generierung von Wissen aus Erfahrung: Ein künstliches System lernt aus Beispielen und kann nach Beendigung der Lernphase verallgemeinern. Das heißt, es lernt nicht einfach die Beispiele …   Deutsch Wikipedia

  • Honnefer Modell — Das Bundesausbildungsförderungsgesetz (kurz: BAföG) regelt die staatliche Unterstützung für die Ausbildung von Schülern und Studenten. Mit dem Kürzel BAföG wird umgangssprachlich auch die Förderung bezeichnet, die sich aus dem Gesetz ergibt. Das… …   Deutsch Wikipedia

  • Hauptkomponentenanalyse — als Faktorenanalyse: Zwei Hauptkomponenten einer zweidimensionalen Punktwolke (orthogonal rotiert) Die Hauptkomponentenanalyse (siehe auch Hauptachsentransformation oder Singulärwertzerlegung) oder englisch Principal Component Analysis (PCA) …   Deutsch Wikipedia

  • Karhunen-Loève-Transformation — Hauptkomponentenanalyse als Faktorenanalyse: Zwei Hauptkomponenten einer zweidimensionalen Punktwolke (orthogonal rotiert) Die Hauptkomponentenanalyse (englisch: Principal Component Analysis, PCA) ist ein Verfahren der multivariaten Statistik.… …   Deutsch Wikipedia

  • Karhunen-Loéve-Transformation — Hauptkomponentenanalyse als Faktorenanalyse: Zwei Hauptkomponenten einer zweidimensionalen Punktwolke (orthogonal rotiert) Die Hauptkomponentenanalyse (englisch: Principal Component Analysis, PCA) ist ein Verfahren der multivariaten Statistik.… …   Deutsch Wikipedia

  • Principal Component Analysis — Hauptkomponentenanalyse als Faktorenanalyse: Zwei Hauptkomponenten einer zweidimensionalen Punktwolke (orthogonal rotiert) Die Hauptkomponentenanalyse (englisch: Principal Component Analysis, PCA) ist ein Verfahren der multivariaten Statistik.… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”