Hexagon (Saturn)

Hexagon (Saturn)
Saturn  Astronomisches Symbol des Saturns
Saturn in natürlichen Farben, fotografiert von der Raumsonde Cassini aus einer Entfernung von 6,3 Millionen km.
Saturn in natürlichen Farben, fotografiert am 6. Oktober 2004 von der Raumsonde Cassini aus einer Entfernung von 6,3 Millionen km.
Eigenschaften des Orbits [1]
Große Halbachse 9,582 AE
(1.433,4 · 106 km)
Perihel – Aphel 9,021 – 10,054 AE
Exzentrizität 0,05415
Neigung der Bahnebene 2,484°
Siderische Umlaufzeit 29,457 a
Synodische Umlaufzeit 378,09 d
Mittlere Orbitalgeschwindigkeit 9,69 km/s
Kleinster – größter Erdabstand 7,991 – 11,086 AE
Physikalische Eigenschaften [1]
Äquator – Poldurchmesser* 120.536 – 108.728 km
Masse 5,685 · 1026 kg
Mittlere Dichte 0,687 g/cm3
Hauptbestandteile
(Stoffanteil der oberen Schichten)
Fallbeschleunigung* 10,44 m/s2
Fluchtgeschwindigkeit 35,5 km/s
Rotationsperiode 10 h 47 min
Neigung der Rotationsachse 26,73°
Geometrische Albedo 0,47
Max. scheinbare Helligkeit -0,2m
Temperatur*
Min. – Mittel – Max.
134 K (–139°C)
*bezogen auf das Nullniveau des Planeten
Sonstiges
Monde min. 60
Größenvergleich zwischen Erde (links) und Saturn.

Der Saturn ist mit einem Äquatordurchmesser von etwa 120.500 km der zweitgrößte Planet des Sonnensystems und wird in seiner Größe nur von Jupiter übertroffen. Saturn ist mit einer durchschnittlichen Entfernung zur Sonne von knapp 1,43 Milliarden km der sechste Planet des Sonnensystems, seine Bahn verläuft zwischen der von Jupiter und der des sonnenferneren Uranus. Er ist der äußerste Planet, der mit bloßem Auge problemlos erkennbar ist und war daher schon Jahrtausende vor der Erfindung des Fernrohrs bekannt.

Er ist ein Gasplanet, der zu 97 % aus Wasserstoff besteht und von allen Planeten des Sonnensystems die geringste Dichte (im Mittel 0,7 kg/Liter) aufweist. Von den anderen Planeten hebt sich der Saturn durch seinen besonders ausgeprägten und schon in kleinen Fernrohren sichtbaren Ring ab, der zu großen Teilen aus Wassereis und aus Gesteinsbrocken besteht.

Sein scheinbarer Winkeldurchmesser beträgt je nach Erdentfernung 15-20", jener der Ringe 37-46". Die sogenannten Äquatorstreifen von Saturns Wolkenschichten sind weniger deutlich als bei Jupiter, was mit einer hochlagernden Dunstschicht zusammenhängen dürfte.

Bis einschließlich 2007 wurden 60 Saturnmonde entdeckt, der größte davon ist Titan mit 5150 km Durchmesser.

Sein Zeichen ist eine stilisierte Sichel: .

Inhaltsverzeichnis

Umlaufbahn und Rotation

Umlaufbahn

Der Saturn läuft auf einer annähernd kreisförmigen Umlaufbahn mit einer Exzentrizität von 0,054 um die Sonne. Sein sonnennächster Punkt, das Perihel, liegt bei 9,02 AE und sein sonnenfernster Punkt, das Aphel, bei 10,05 AE. Seine Umlaufbahn ist mit 2,48° leicht gegen die Ekliptik geneigt. Weitere Bahndaten sind die Länge des aufsteigenden Knotens mit 113,72°, die Länge des Perihels mit 92,43° und die mittlere Anomalie mit 49,94° zur Epoche J2000.0. Für einen Umlauf um die Sonne benötigt der Saturn ungefähr 29 Jahre und 166 Tage.[1]

Rotation

Die Rotationsachse des Saturn ist 26,73° gegen seine Umlaufbahn geneigt. Er rotiert nicht wie ein starrer Körper, sondern zeigt als Gasplanet eine differentielle Rotation: Die Äquatorregionen rotieren schneller (eine Rotation in 10 Stunden, 13 Minuten und 59 Sekunden) als die Polregionen (10 Stunden, 39 Minuten und 22 Sekunden). Die Äquatorregionen werden als „System I“, die Polregionen als „System II“ bezeichnet. Aus In-Situ-Messungen des Saturnmagnetfeldes durch Raumsonden wurde für das Saturninnere eine noch etwas langsamere Rotationsperiode von 10 Stunden, 47 Minuten und 6 Sekunden hergeleitet.

Durch neuere, kombinierte Auswertung von Messdaten, welche die Raumsonden Pioneer 11, Voyager 1 und 2 sowie Cassini-Huygens von der Schwerkraft, den Windgeschwindigkeiten und mittels Radio-Okkultationen geliefert haben, sind zwei US-amerikanische Wissenschaftler 2007 zu dem Ergebnis gekommen, dass der Saturnkern eine Umdrehung in 10 Stunden, 32 Minuten und 35 Sekunden absolviert und somit um sieben Minuten schneller ist, als bislang gedacht.[2] Demnach müsste der Kern kleiner sein, als vermutet. In Hinsicht auf die Entstehung des Gasplaneten könnte das für die Scheiben-Instabilitäts-Hypothese sprechen. Nach dieser Hypothese ist der Saturn aus einer kollabierenden Verdichtung der protoplanetaren Scheibe entstanden, und nicht, wie bisher zumeist angenommen, gemäß der Kern-Aggregations-Hypothese vorrangig aus einem Kern von über zehn Erdmassen, der sich als Erstes aus festen Bestandteilen der Gas- und Staubscheibe gesammelt hat und dann erst das Gas aus seiner Umgebung ausreichend anziehen konnte.[3]

Die Präzessionsperiode der Saturnachse liegt nach einer Modellrechnung und Beobachtungen von Durchquerungen der Ringebene in einer Größenordnung von zwei Millionen Jahren.[4]

Physikalische Eigenschaften

Der Saturn gehört zu den sogenannten Gasriesen. Mit einem Durchmesser von gut 120.000 km ist er nach Jupiter der zweitgrößte Planet des Sonnensystems. Obwohl sein Volumen 58 % von Jupiter entspricht, wiegt er doch weniger als ein Drittel (etwa 95 Erdmassen). Der Saturn hat daher eine sehr geringe mittlere Dichte von nur 0,687 g/cm³. Im Durchschnitt ist sein Material also leichter als Wasser unter Normalbedingungen, was für keinen anderen Planeten unseres Sonnensystems zutrifft.

Die Temperatur beträgt bei 1 Bar Atmosphärendruck (dies wird bei Gasplaneten allgemein als „Oberfläche“ definiert) 134 K (-139 °C) und bei 0,1 Bar Druck 84 K (-189 °C).

Obere Schichten

Seine Atmosphäre enthält wie die des Jupiters überwiegend Wasserstoff und Helium, jedoch in einer anderen Zusammensetzung. Der Wasserstoffanteil ist mit etwa 93 % der Masse deutlich höher, der Heliumanteil mit nur knapp 7 % entsprechend geringer. Des Weiteren kommen Spuren von Methan, Ammoniak und anderen Gasen vor.[5][6]

Während die Atmosphäre des Jupiters die Elemente Wasserstoff und Helium im gleichen Verhältnis wie die Sonne enthält, ist der Heliumanteil beim Saturn wesentlich geringer. Dies hängt mit der niedrigeren Temperatur des Saturn zusammen, durch die das Helium größtenteils kondensieren konnte. Die eher detailarme, gelblich-braune Wolkendecke enthält überwiegend gefrorene Ammoniakkristalle.

Innerer Aufbau

Schematischer Aufbau von Saturn

Die Atmosphäre, die wie bei Jupiter hauptsächlich aus Wasserstoff besteht, geht mit zunehmender Tiefe aufgrund des hohen Druckes allmählich vom gasförmigen in den flüssigen Zustand über. Es existiert jedoch keine definierte Oberfläche, da der Druck in den Tiefen der Atmosphäre jenseits des kritischen Punkts ansteigt und unter diesen Bedingungen eine Unterscheidung zwischen Gas und Flüssigkeit nicht mehr möglich ist. Weiter in der Tiefe geht der Wasserstoff schließlich in seine metallische Form über. Diese Schichten haben jedoch im Gegensatz zum Jupiter aufgrund der kleineren Masse andere Mächtigkeitsverhältnisse. So beginnt im Saturn die metallische Schicht erst bei 0,47 Saturnradien (Jupiter: 0,77 Jupiterradien). Unterhalb dieser Schicht liegt ein Gesteinskern (genauer: Eis-Silikat-Kern), für den Modellrechnungen eine Masse von circa 16 Erdmassen ergeben. Damit besitzt der Saturn-Kern einen Masseanteil von 25 %, der des Jupiter lediglich 4 %. Das Innere des Gesteinskerns ist sehr heiß, es herrscht eine Temperatur von 12.000 Kelvin. Als Grund dafür wird unter anderem der Kelvin-Helmholtz-Mechanismus angenommen, eine langsame gravitationsbedingte Kompression.[7][6]

Wetter

Die Wolken, die auf der Oberfläche des Saturns zu sehen sind, bestehen vor allem aus auskristallisiertem Ammoniak. Saturn besitzt mindestens zwei Wolkenschichten. Die obere verdeckt die untere, wobei letztere nur im infraroten Bereich sichtbar ist, da Saturn Wärme aus seinem Inneren abstrahlt.[8] Die obere Wolkenschicht des Saturn reflektiert das Licht der Sonne, wodurch sie gut beobachtet werden kann. Die obere Schicht weist gröbere Strukturen auf als die untere.

Winde

Hexagon am Nordpol (5-µm-Infrarotaufnahme während der Polarnacht)

Der Nordpol ist der Mittelpunkt eines Polarwirbels und einer stabilen Struktur in der Form eines nahezu regelmäßigen Sechsecks mit einem Durchmesser von fast 25.000 Kilometern. Das anscheinend mehrere 100 Kilometer tiefe Hexagon wurde bereits 1980 und 1981 von den Voyager-Sonden aufgenommen; es ist auch auf den von der Saturnsonde Cassini übermittelten Bildern von 2006 wieder zu sehen. Das Hexagon rotiert alle 10 Stunden 39 Minuten und 24 Sekunden einmal, die gleiche Zeit, die auch die Radioemissionen von Saturn für eine Umdrehung benötigen. Die Entstehung dieses Effekts ist noch nicht geklärt.[9]

Auge am Südpol (752-nm-Infrarotaufnahme)

Am Südpol befindet sich ein ortsfester, hurrikanähnlicher Sturm mit einem Durchmesser von etwa 8000 Kilometern. Auf Saturn wurden weitere Stürme beobachtet, wie zum Beispiel der „Große Weiße Fleck“, ein Effekt, der alle 29 Jahre auf der nördlichen Hemisphäre Saturns zu beobachten ist und vergleichbar mit dem „Großen Roten Fleck“ auf dem Jupiter ist.[10]

Wissenschaftler entdeckten 2005 durch Beobachtungen mit dem Keck-Teleskop auf Hawaii einen „Hot Spot“ (eine im Vergleich zur Umgebung warme Stelle) am Südpol des Saturns. Damit unterscheidet sich Saturn von allen anderen Planeten, bei denen die kältesten Orte in den Polargebieten liegen. Mithilfe des Orbiters Cassini spürten im Januar 2008 Astronomen am Nordpol gleichfalls einen „Hot Spot“ auf, obwohl es dort schon jahrelang dunkel ist. Diese „Hot Spots“ entstehen durch sich bewegendes Atmosphärengas, das sich in Richtung der Pole bewegt. Dabei wird es komprimiert und aufgeheizt; schließlich sinkt es am Pol in Form eines Wirbels in die Tiefen der Saturnatmosphäre ab. Es scheint sich bei beiden Wirbeln um langlebige Strukturen zu handeln, deren Existenz nicht von der Sonneneinstrahlung abhängt.[11]

Magnetfeld

Der Saturn besitzt ein eigenes Magnetfeld, dessen Form der einfachen, symmetrischen Form eines magnetischen Dipols entspricht. Die Feldstärke am Äquator beträgt etwa 20 µT und ist damit etwa 20-mal weniger stark als das äquatoriale Feld Jupiters (420 µT) und etwas schwächer als das äquatoriale Erdfeld (30 µT). Das magnetische Dipolmoment, das ein Maß für die Stärke des Magnetfeldes bei vorgegebenem Abstand vom Zentrum des Planeten ist, ist mit 4,6 × 1018 Tm3 580-mal stärker als das Magnetfeld der Erde (7,9 × 1015 Tm3). Das Dipolmoment Jupiters ist allerdings mit 1,55 × 1020 Tm3 trotz des ähnlich großen Planetendurchmessers etwa 34-mal so groß.[12][13] Daher ist die Magnetosphäre des Saturn deutlich kleiner als die des Jupiters und erstreckt sich nur zeitweise knapp über die Umlaufbahn des Mondes Titan hinaus.[14] Einzigartig im Sonnensystem ist die fast exakt parallele Ausrichtung der Magnetfeldachse und der Rotationsachse. Während z. B. bei Erde und Jupiter diese Achsen etwa 10° gegeneinander geneigt sind, beträgt die Abweichung der beiden Achsen beim Saturn weniger als 1°.[15]

Regionen innerhalb der Magnetosphäre Saturns

Sehr wahrscheinlich wird das Magnetfeld durch einen Mechanismus erzeugt, der dem Dynamo im Inneren Jupiters entspricht und eventuell von Strömen im metallischen Wasserstoff angetrieben wird.[14] Es gibt aber auch konkurrierende Theorien, die die Ursache des Magnetismus in anderen Materialien und Schichten des Gasplaneten suchen.[16]

Genau wie bei anderen Planeten mit ausgeprägtem Magnetfeld wirkt die Magnetosphäre des Saturn als effizienter Schutzschild gegen das Weltraumwetter. Da der Sonnenwind mit Überschallgeschwindigkeit auf die Magnetosphäre trifft, bildet sich auf der sonnenzugewandten Seite eine Stoßwelle aus, die zur Bildung einer Magnetopause führt. Auf der sonnenabgewandten Seite bildet sich, wie bei Erde und Jupiter, ein langer Magnetschweif. Der große Mond Titan, dessen Umlaufbahn noch im Inneren der Magnetosphäre liegt, trägt durch seine ionisierten oberen Atmosphärenschichten (Ionosphäre) zum Plasma der Magnetosphäre bei.[12] Die genaue Struktur der Magnetosphäre ist äußerst komplex, da sowohl die Ringe des Saturn als auch die großen inneren Monde mit dem Plasma wechselwirken.

Ringsystem

Sichtbarkeit der Saturnringe bis 2029

Hauptartikel: Saturnringe

Den Saturn umgibt in seiner Äquatorebene ein auffälliges Ringsystem, das bereits in einem kleinen Teleskop problemlos zu sehen ist. Das Ringsystem wurde 1610 von Galileo Galilei entdeckt, der es aber als „Henkel“ deutete. Christiaan Huygens beschrieb die Ringe 45 Jahre später korrekt als Ringsystem. Giovanni Domenico Cassini vermutete als erster, dass die Ringe aus kleinen Partikeln bestehen, und entdeckte 1675 die Cassinische Teilung.[17]

Die Ringe werfen einen sichtbaren Schatten auf den Saturn – wie auch umgekehrt der Saturn auf seine Ringe. Der Schattenwurf auf die Saturnoberfläche ist umso ausgeprägter, je mehr die recht dünne Hauptebene des Ringsystems im Laufe eines Saturnjahres gegenüber der Sonne geneigt ist.

Es gibt mehr als 100.000 einzelne Ringe mit unterschiedlichen Zusammensetzungen und Farbtönen, welche durch scharf umrissene Lücken voneinander abgegrenzt sind. Der innerste beginnt bereits etwa 7.000 km über der Oberfläche des Saturn und hat einen Durchmesser von 134.000 km, der äußerste hat einen Durchmesser von 960.000 km. Die größten Ringe werden von innen nach außen als D-, C-, B-, A-, F-, G- und E-Ring bezeichnet.

Die Umlaufzeit der inneren Ringe beträgt sechs bis acht Stunden, die der äußeren Ringe zwölf bis vierzehn Stunden.

Die Lücken zwischen den Ringen beruhen auf der gravitativen Wechselwirkung mit den zahlreichen Monden des Saturn sowie der Ringe untereinander. Dabei spielen auch Resonanzphänomene eine Rolle, die auftreten, wenn die Umlaufszeiten im Verhältnis kleiner ganzer Zahlen stehen. So wird die Cassinische Teilung durch den Mond Mimas verursacht. Einige kleinere Monde, sogenannte Hirten- oder auch Schäfermonde, kreisen direkt in den Lücken und an den Rändern des Ringsystems und stabilisieren dessen Struktur. Neue Messungen und Aufnahmen der Raumsonde Cassini haben ergeben, dass die Ringkanten und damit die Abtrennung der Ringe noch schärfer sind als bisher angenommen. So hatte man vermutet, dass sich in den Lücken ebenfalls einige Eisbrocken befinden, was aber nicht der Fall ist.

Die Ringteilchen umkreisen den Saturn rechtläufig in dessen Äquatorebene; somit ist das Ringsystem ebenso wie die Äquatorebene um 27° gegen Saturns Bahnebene geneigt. Alle 14,8 Jahre befindet sich das Ringsystem in der sogenannten „Kantenstellung“, in der der dünne Rand der Ringe genau der Erde zugewandt ist, so dass das Ringsystem nahezu unsichtbar wird. Das wird das nächste Mal im Jahre 2009 wieder der Fall sein.

Speichenartige Strukturen, beobachtet von Voyager 2

Ein weiteres Phänomen sind radiale, speichenartigen Strukturen, die sich von innen nach außen über die Ringe erstrecken und hierbei enorme Ausmaße annehmen: bei einer Breite von rund 100 Kilometern können sie bis zu 20.000 Kilometer lang werden.[18] Diese „Speichen“ wurden erstmals von der Sonde Voyager 2 bei ihrer Passage im Jahr 1981 entdeckt, später konnte die Beobachtung unter anderem vom Weltraumteleskop Hubble bestätigt werden. Rätselhafterweise verschwanden diese Strukturen ab 1998 allmählich und konnten dann erst wieder ab September 2005 auf Aufnahmen der Raumsonde Cassini nachgewiesen werden. Als Ursache für die Streifenbildung wurde zunächst eine kurzlebige Wechselwirkung mit dem Magnetfeld des Saturn vermutet.

Aufnahme der Ringe des Saturn von Cassini; das Bild wurde aus einem Winkel von 60° zum Ringsystem gemacht.

US-amerikanische Astronomen fanden 2006 jedoch eine andere Erklärung für das Rätsel um die Speichenstrukturen: demnach bestehen die Speichen aus winzigen (wenige µm) geladenen Staubpartikeln, deren Flugbahn vom UV-Licht der Sonne so beeinflusst wird, dass sie durch entstehende elektrostatische Kräfte in einen Schwebezustand (Levitation) gebracht und angehoben werden.[19] Je nach Position des Saturn auf seiner Umlaufbahn ändert sich der Winkel zwischen den Saturnringen und der Sonne und somit auch der Einfallswinkel des ultravioletten Lichts. Die dunklen Streifen entstehen in periodischen Abständen immer wenn die Sonne in der Ringebene des Saturn steht und bestehen dann für etwa acht Jahre. Eine streifenlose Phase hält dagegen sechs bis sieben Jahre lang an.[20] Der Grund für die elektrostatische Aufladung der Ringe wird kontrovers diskutiert. Eine Erklärung ist, dass Blitze in der oberen Atmosphäre des Saturn auftreten, welche durch komplexe Vorgänge Elektronenstrahlen erzeugen, die die Ringe treffen.[21]

Zur Entstehung der Saturnringe gibt es verschiedene Theorien. Nach der von Édouard Albert Roche bereits im 19. Jahrhundert vorgeschlagenen Theorie entstanden die Ringe durch einen Mond, der sich dem Saturn so weit genähert hat, dass er durch Gezeitenkräfte auseinandergebrochen ist. Der kritische Abstand wird als Roche-Grenze bezeichnet. Der Unterschied der Anziehungskräfte durch den Saturn auf beiden Seiten des Mondes übersteigt in diesem Fall die mondinternen Gravitationskräfte, so dass der Mond nur noch durch seine materielle Struktur zusammengehalten wird. Nach einer Abwandlung dieser Theorie zerbrach der Mond durch eine Kollision mit einem Kometen oder Asteroiden. Nach einer anderen Theorie sind die Ringe gemeinsam mit dem Saturn selbst aus derselben Materialwolke entstanden. Diese Theorie wird jedoch heute kaum noch vertreten, denn es wird vermutet, dass die Ringe ein nach astronomischen Maßstäben eher kurzlebiges Phänomen von höchstens einigen 100 Millionen Jahren darstellen. Dies hat sich jedoch im September 2008 relativiert. Larry Esposito, der US-Astronom, der Anfang der 1980er-Jahre Alter und Gewicht der Saturnringe vermessen hatte, korrigiert seine Schätzungen von damals. Neuen Forschungsergebnissen nach könnte das Alter des Ringsystems mehrere Milliarden Jahre betragen, womit von einem kurzlebigen Phänomen keine Rede mehr sein könnte. Die bisherigen Erkenntnisse über das Alter des Ringsystems wurden aus der Menge an Sternenlicht gewonnen, das durch die Ringe hindurchtritt. Esposito und seine Kollegen haben aber nun das Verhalten von mehr als 100.000 Teilchen in den Saturnringen simuliert. Dies war aufgrund neuer Daten der Raumsonde Cassini, die 2004 den Saturn erreichte, möglich. Diese Daten waren genauer als die jener Sonden, die den Saturn in den 1970er- und 1980er-Jahren besuchten. Die anhand der neuen Messdaten vorgenommenen Kalkulationen haben gezeigt, dass innerhalb der Ringe dynamische Prozesse ablaufen, die eine Kalkulation der Masse anhand des einfallenden Sternenlichts viel schwieriger gestalten als bislang gedacht. Den neu errechneten Daten zufolge könnten die Ringe mehr als dreimal so schwer sein.

Monde

Vier Saturn-Monde: Titan (hinten), Dione (vor Titan), Prometheus (Mitte, unter den Ringen) und Telesto (oben) mit Saturnringen im Mittelgrund; fotografiert von der Raumsonde Cassini

Übersicht: Liste der Saturnmonde

Von den heute 60 bekannten Monden ist Titan der größte mit einem Durchmesser von 5150 km. Die vier Monde Rhea, Dione, Tethys und Iapetus besitzen Durchmesser zwischen 1050 km und 1530 km. Telesto, Tethys und Calypso bewegen sich mit jeweils 60 Grad Versatz auf derselben Bahn um den Saturn. Ein zweites Gespann von „Trojaner-Monden“ sind Helene (Saturn XII – S/1980 S 6) und Polydeuces, die sich unter je 60 Grad Versatz eine Bahn mit Dione teilen.[22][23]

Eine weitere Besonderheit stellen die Monde Janus und Epimetheus dar, welche auf zwei fast gleichen Umlaufbahnen den Saturn umlaufen. Alle vier Jahre kommen sie sich sehr nahe und tauschen durch die gegenseitige Anziehungskraft ihre Umlaufbahnen um den Saturn.

1905 gab William Henry Pickering bekannt, einen weiteren Mond entdeckt zu haben. Pickering schätzte den Durchmesser auf 61 km. Der Mond wurde Themis genannt, da er aber nie wieder gesichtet wurde, gilt er als nicht existent.

Anfang Mai 2005 wurde ein weiterer Mond entdeckt, provisorisch S/2005 S 1 genannt, der mittlerweile den offiziellen Namen Daphnis trägt. Er ist der zweite Mond neben Pan, der innerhalb der Hauptringe des Saturn kreist.[24]

Im Juni 2006 wurden mit dem Teleskop auf dem Mauna Kea, auf Hawaii, neun weitere Monde entdeckt, die auf stark elliptischen Bahnen zwischen 17,5 und 23 Millionen Kilometern den Saturn entgegen dessen Rotationsrichtung umkreisen. Daraus lässt sich schließen, dass es sich um eingefangene Überreste von Kometen oder Kleinplaneten handeln muss. Der Mitte 2007 vom Cassini Imaging Science Team entdeckte Mond Anthe ist mit einem Radius von ungefähr 2 km der bislang kleinste entdeckte Mond des Saturn.

Zum Zeitpunkt des Eintritts der Raumsonde Cassini in den Saturnorbit wurden kleinere Körper mit nur etwa 100 m Durchmesser gefunden, vermutlich Überreste eines ehemals größeren Körpers, die kleine „Möndchen“ beziehungsweise die Saturnringe bilden. Die Forscher schätzen etwa eine Zahl von 10 Millionen solcher kleinen Gebilde in den Saturnringen. Sie erhoffen sich nun, mithilfe dieser Überreste eine eindeutige Erklärung für die Entstehung der Saturnringe zu finden.

Beobachtung

vgl. Hauptartikel: Saturnpositionen bis 2021

Erforschung

Vor dem Raumfahrtzeitalter

Galilei konnte mit seinem Fernrohr die Gestalt des Ringes nicht deutlich erkennen.

Saturn ist seit alters her bekannt. In der Antike war er der entfernteste der fünf bekannten Planeten des Sternhimmels.

Im Jahre 1610 schickte der italienische Mathematiker, Physiker und Astronom Galileo Galilei an Johannes Kepler das Anagramm Smaismrmilmepoetaleumibunenvgttavrias, um sich die Priorität einer Entdeckung zu sichern, ohne sie bereits preisgeben zu müssen. Als Galilei sich seiner Beobachtungen sicher war, verriet er auch die Lösung. Sie lautet:[25]

Altissimum planetam tergeminum observavi
Den obersten Planeten habe ich dreigestaltig gesehen.

Galilei hatte kurz zuvor erstmals den Saturn durch eines der ersten Fernrohre beobachtet und geglaubt, zu beiden Seiten der Saturnscheibe rundliche Ausbuchtungen zu erkennen. Im Jahre 1612 konnte Galilei allerdings nur noch die Saturnscheibe selbst erkennen, glaubte sich in seinen früheren Beobachtungen getäuscht zu haben und verfolgte die merkwürdige Angelegenheit nicht weiter.[25] Da sich in jenem Jahre der Ring in Kantenstellung befand, war er in der Tat für die damaligen Fernrohre nicht erkennbar.

Auch andere Astronomen wie Fontana, Gassendi, Hevelius, Riccioli oder Grimaldi vermochten in den folgenden Jahrzehnten lediglich das Vorhandensein der Anhängsel festzustellen, ohne die Erscheinung und ihr gelegentliches Verschwinden aber erklären zu können.[25] Erst nachdem Christiaan Huygens am 25. März 1655 dank verbesserter selbstgebauter Fernrohre einen Mond (Titan) entdeckt und über mehrere Monate hinweg verfolgt hatte, brachte ihn die damit verbundene systematische Beobachtung des Planeten zur 1659 veröffentlichten Überzeugung, dass Saturn von einem freischwebenden Ring umgeben sei, und dass dessen stets verschieden wahrgenommene Gestalt sich aus den unterschiedlichen Neigungen erklärt, mit denen er sich während eines Saturnumlaufs dem Betrachter darbietet.[26] Huygens bestimmte die Neigung des Rings gegen die Ekliptik zu 31° und die Knotenlänge zu 169½°.[26]

Giovanni Domenico Cassini entdeckte 1671 den Saturnmond Japetus, 1672 Rhea, 1684 Dione und Tethys.[26] Cassini bemerkte 1675 auch die nach ihm benannte Teilung in den Saturnringen.[26]

Die merkliche Abplattung des Saturn war bereits von Grimaldi als 1/12 gemessen worden,[25] aber erst William Herschel gelang es 1790, die Rotationsdauer zu bestimmen; er erhielt 10h 16m, was mit der Abplattung gut übereinstimmte.[27]

Herschel hatte 1789 auch die beiden Monde Mimas und Enceladus entdeckt.[28] Der achte Mond, Hyperion, wurde 1848 etwa gleichzeitig von Bond und Lassell gefunden.[27]

Die Monde sowie die von Saturn auf die anderen Planeten ausgeübten Störungen erlaubten es, die Masse von Saturn zu bestimmen. Newton fand 1/3021 Sonnenmassen (1726, aus der Umlaufzeit von Titan), Bouvard 1/3512 (1821, aus den Störungen), Leverrier 1/3530 (1876, aus den Störungen), Hall 1/3500 (1889, Umlaufzeit von Titan).[27]

1850 wiesen Bond und Lassell den schon von früheren Beobachtern gelegentlich beschriebenen inneren, durchscheinenden Krepp-Ring nach.[27] Die von D. Lamey ab 1868 gesehenen vier äußeren Nebelringe[27] konnten allerdings nicht bestätigt werden.

Pickering entdeckte 1898 den weit außen kreisenden Mond Phoebe.[29]

Pioneer 11

Eine Aufnahme des Saturn und seines Mondes Titan von Pioneer 11

Als erste Sonde überhaupt flog Pioneer 11 am 1. September 1979 in 21.000 km Entfernung am Saturn vorbei. Dabei flog die Sonde zwischen dem A-Ring und dem F-Ring, der erst durch die Sonde entdeckt wurde. 17 Stunden vor dem Vorbeiflug wurde der Mond Epimetheus entdeckt, an dem die Sonde in 2.500 km Abstand vorbeiflog. Es wurden 220 Bilder von Saturn und eines von Titan gemacht, die aber keine Einzelheiten unter einer Auflösung von 500 km zeigten. Man fand heraus, dass die schwarzen Lücken in den Ringen hell waren, wenn sie in Richtung der Sonne beobachtet wurden. Dies bedeutet, dass diese Spalten nicht frei von Materie sind.[30] Außerdem wurde das Magnetfeld von Saturn untersucht, über das man vorher noch nichts wusste. Weitere Ergebnisse waren, dass Saturn Energie abgibt, der Wasserstoff-Anteil von Saturn größer als der des Jupiter ist und dass Titan eine dichte Wolkendecke besitzt.[31]

Voyager 1

Am 13. November 1980 besuchte die Raumsonde Voyager 1 den Saturn. Sie lieferte die ersten hochauflösenden Bilder des Planeten, der Ringe und Satelliten. Dabei wurden erstmals Oberflächendetails verschiedener Monde sichtbar. Zudem wurden mehrere Monde neu entdeckt. Der Vorbeiflug an Titan war anfangs außergewöhnlich schlecht verlaufen, da die dichte Smogschicht über Titan keine Aufnahmen ermöglichte. Daraufhin wurden die Kameras umprogrammiert und man analysierte die Atmosphäre des Titan. Dabei fand man heraus, dass diese aus Stickstoff, Methan, Ethylen und Cyankohlenwasserstoffen besteht. Die Datenrate, mit der die Sonde Bilder übertragen konnte, betrug 44.800 Bit/s. Daher musste die Voyager-Sonde schon früh damit beginnen, Bilder aufzunehmen, um genügend Daten zu erhalten. Das Fly-by-Manöver veränderte die Richtung der Raumsonde und sie verließ die Ebene des Sonnensystems.[32]

Voyager 2

Knapp ein Jahr nach Voyager 1, am 26. August 1981, kam die Schwestersonde Voyager 2 beim Ringplaneten an. Man bekam noch mehr hochauflösende Bilder von den Monden Saturns. Durch Vergleich mit den Voyager-1-Bildern stellte man Änderungen der Atmosphäre und der Ringe Saturns fest. Da die schwenkbare Plattform der Kamera für ein paar Tage stecken blieb, konnten einige geplante Bilder jedoch nicht gemacht werden. Bei der Atmosphäre wurden Temperatur- und Druckmessungen durchgeführt. Durch die Sonde wurden einige Monde bestätigt und man fand mehrere neue Monde nahe oder innerhalb der Ringe. Die kleine Maxwell-Lücke im C-Ring und die 42 km breite Keeler-Lücke im A-Ring wurden entdeckt. Saturns Schwerkraft wurde genutzt, um die Sonde in Richtung Uranus zu lenken.[33][34]

Cassini-Huygens

Der Saturn verdeckt die Sonne; von Cassini aufgenommen. In der Vergrößerung ist links von den hellen Ringen die Erde als Lichtpünktchen zu erkennen.

Nach einem siebenjährigem Flug passierte die Raumsonde Cassini-Huygens am 11. Juni 2004 den Saturnmond Phoebe mit einem Abstand von nur 2068 km und untersuchte diesen aus der Nähe.

Am 1. Juli 2004 lenkte sich die Sonde auf eine Umlaufbahn um den Saturn ein. Seit Anfang 2005 beobachten Wissenschaftler mithilfe von Cassini Gewitter auf dem Saturn. Vermutlich hatten die Blitze etwa 1000-mal mehr Energie als die der Erde. Die Astronomen glauben, dass dieser Sturm der stärkste war, der jemals beobachtet wurde.[35]

Am 20. September 2006 entdeckte man anhand einer Aufnahme von Cassini einen bisher unbekannten planetarischen Ring, der sich außerhalb der helleren Hauptringe befindet, aber innerhalb des G- und E-Rings. Vermutlich stammt das Material dieses Ringes von Zusammenstößen von Meteoriten mit zwei Saturnmonden.[36]

Im Oktober 2006 spürte die Sonde einen Hurrikan mit einem Durchmesser von 8.000 km auf, dessen Auge am Südpol von Saturn liegt.[37]

Der Orbiter „Cassini“ führte eine zusätzliche Landungssonde „Huygens“ mit sich, die am 14. Januar 2005 auf dem Mond Titan landete und dabei Fotos von Methanseen auf dem Mond machte.[38] Durch einen Bedienfehler an Cassini, der als Relaisstation zur Kommunikation mit der Erde diente, wurde aber nur jedes zweite Bild der Sonde zurück zur Erde übertragen. Cassini machte am 26. Oktober 2004 außerdem Radarfotos der Oberfläche von Titan aus einer Höhe von 1.200 km.

Am 10. März 2006 berichtete die NASA, dass Cassini unterirdische Wasserreservoirs dicht unter der Oberfläche des Mondes Enceladus gefunden habe.[39] Cassini fand außerdem vier neue Monde des Saturn.

Cassini befindet sich zur Zeit immer noch im Orbit um Saturn und führt weitere Untersuchungen durch.

Kulturgeschichte

Allegorische Darstellung des Saturn als Herrscher der Tierkreiszeichen Steinbock und Wassermann; von Sebald Beham, 16. Jahrhundert.

Da der Saturn mit bloßem Auge gut sichtbar ist und als Wandelstern auffällt, wurde er schon im Altertum mit mythologischen Deutungen belegt. Die Sumerer nannten ihn Lubat-saguš („Stern der Sonne“), während die Babylonier Saturn bezüglich seiner Umlaufgeschwindigkeit Kajamanu („der Beständige“) nannten. Die Römer sahen in ihm den Planeten des Gottes Saturn, während er im antiken Griechenland als Planet des Gottes Kronos galt. In der hinduistischen Astrologie bezeichnet Navagraha den Saturn als Shani. In der mittelalterlichen Astrologie stand Saturn – der traditionell mit einer Sichel oder Sense dargestellt wird – für Unglück: Sorgen, Melancholie, Krankheiten und harte Arbeit, jedoch auch für Ordnung und Maß.

In der chinesischen und japanischen Kultur steht der Saturn für die Erde. Dies basiert auf der Fünf-Elemente-Lehre. Die osmanische und indonesische Sprache bezeichnet Saturn als Zuhal, abgeleitet vom arabischen زحل. Im hebräischen wird Saturn als Shabbathai bezeichnet.

Außerdem vermutete Konradin Ferrari d'Occhieppo schon 1965, dass der Stern von Betlehem eine sehr seltene und enge dreifache Saturn-Jupiter-Konjunktion im Sternzeichen Fische war. Dabei trafen sich die beiden Gasriesen im Jahre 7 vor Christus dreimal, am 27. Mai, 6. Oktober und 1. Dezember. Dieses Jahr scheint gut in den ungefähren Zeitraum der Geburt Jesu zu passen. Babylonische Astronomen könnten das Treffen der Planeten Saturn und Jupiter als wichtigen Hinweis gedeutet haben.

Der englische Tagesname Saturday bezieht sich auf den Planeten Saturn.

Quellen und weiterführende Informationen

Siehe auch

Literatur

  • Ute Kehse: Polarlichter sind einzigartig – Cassini und Hubble werfen 25 Jahre alte Theorien über den Haufen (Bericht über einen Artikel in der Zeitschrift Nature): 19. Februar 2005, Onlineportal der Zeitschrift Bild der Wissenschaft: Artikel online abrufbar unter http://www.wissenschaft.de/wissen/news/249343.html
  • Thorsten Dambeck: Saturnmond in Fetzen: Die Saturnringe könnten die Trümmer eines zerborstenen Mondes sein. Bild der Wissenschaft, 9/2006, S. 60–63, ISSN 0006-2375
  • Ronald Weinberger: Präzise Bestimmung der Rotation des Saturn. Naturwissenschaftliche Rundschau 59(12), S. 664–665 (2006), ISSN 0028-1050.

Weblinks

Videos

Einzelnachweise

  1. a b c NASA Saturn Fact Sheet.
  2. John D. Anderson and Gerald Schubert Saturn's Gravitational Field, Internal Rotation, and Interior Structure
  3. Astronomie-heute.de: Der Saturnkern rotiert schneller als gedacht 10.09.2007
  4. William R. Ward, Douglas P. Hamilton: Tilting Saturn. I. Analytic Model, The Astronomical Journal 128, November 2004, S. 2501–2509
  5. Courtin, R.; Gautier, D.; Marten, A.; Bezard, B.: The Composition of Saturn's Atmosphere at Temperate Northern Latitudes from Voyager IRIS spectra. In: Bulletin of the American Astronomical Society. 15, 1983, S. 831
  6. a b The Solar System – Saturn
  7. NASA Saturn Worldbook
  8. Saturn als „Martinslaterne“
  9. Cassini Images Bizarre Hexagon on Saturn, Pressemitteilung 2007-034 des Jet Propulsion Laboratory, 27.03.2007
  10. Great White Spot
  11. Astronews Überraschung am Nordpol des Ringplaneten
  12. a b C. T. Russell, J. G. Luhmann: Saturn: Magnetic Field and Magnetosphere. UCLA – IGPP Space Physics Center, 1997. Abgerufen am 13.09.2007. (englisch)
  13. C. T. Russell, J. G. Luhmann: Jupiter: Magnetic Field and Magnetosphere. UCLA – IGPP Space Physics Center, 1997. Abgerufen am 13.09.2007. (englisch)
  14. a b Matthew McDermott: Saturn: Atmosphere and Magnetosphere. Thinkquest Internet Challenge, 2000. Abgerufen am 15.07.2007. (englisch)
  15. Cassini-Huygens Website zur Magnetosphäre
  16. NASA Special Publication Passage to a Ringed World Chapter 6
  17. Historical Background of Saturn’s Rings
  18. Blitzartig gestreift: zu den rätselhaften Speichen im Ringsystem auf www.wissenschaft.de
  19. C. J. Mitchell et al.: Saturn's Spokes: Lost and Found. Science, 17.03.2006, Vol. 311. Nr. 5767, S. 1587–1589
  20. Cassini entdeckt Speichen
  21. Blitze sollen Saturnringe stören
  22. Saturns bekannte Satelliten
  23. Aktuelle Cassini-Aufnahmen der Monde
  24. NASA - Saturn Monde
  25. a b c d R. Wolf: Handbuch der Astronomie, ihrer Geschichte und Litteratur. Schulthess, Zürich 1892, Nachdruck Olms 1973, Par. 553
  26. a b c d R. Wolf, a.a.O., Par. 554
  27. a b c d e R. Wolf, a.a.O., Par. 555
  28. K. Schaifers, H.H. Voigt (Hrsg.): Landolt-Börnstein. Gruppe VI, Bd. 2a, Springer, Berlin 1981, S. 137
  29. K. Schaifers, H.H. Voigt, a.a.O., S. 139
  30. Pioneer Mission Description
  31. Pioneer 10+11
  32. Voyager-Sonden
  33. Missions to Saturn
  34. Voyager-Sonden
  35. Astronomers Find Giant Lightning Storm At Saturn. ScienceDaily LLC, 2007. Abgerufen am 27. Juli 2007.
  36. David Shiga: Faint new ring discovered around Saturn. NewScientist.com, 20. September 2007. Abgerufen am 8. Juli 2007.
  37. Paul Rincon: Huge 'hurricane' rages on Saturn. BBC, 10. November 2006. Abgerufen am 12. Juni 2007.
  38. Probe reveals seas on Saturn moon
  39. Cassini Discovers Potential Liquid Water on Enceladus


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Hexagon — steht für: Sechseck, ein Polygon (Vieleck), bestehend aus sechs Ecken und sechs Seiten Hexagon (Saturn), Polarwirbel auf dem Saturn Hexagon (Unternehmensgruppe), ein schwedischer Messtechnik Konzern im weiteren Sinn für Zivilisatorische Hexagon,… …   Deutsch Wikipedia

  • Saturn (Planet) — Saturn   …   Deutsch Wikipedia

  • Saturn — Infobox Planet bgcolour = #FFCC66 name = Saturn symbol = caption = Saturn, as seen by Cassini orbit ref =cite web last = Yeomans | first = Donald K. | date = 2006 07 13 url = http://ssd.jpl.nasa.gov/?horizons title = HORIZONS System | publisher …   Wikipedia

  • Hexagon — Pop culture references In the They Might Be Giants song entitled Nonagon on their children s album Here Come the 123s, the six sided hexagon is the disk jockey at the party hosted by the polygon named in the song title.… …   Wikipedia

  • Planet Saturn — Saturn   …   Deutsch Wikipedia

  • Winde auf dem Planeten Saturn — Saturn   …   Deutsch Wikipedia

  • — Saturn   …   Deutsch Wikipedia

  • Sechseck — Regelmäßiges Sechseck Ein Sechseck oder Hexagon [hɛksaˈgoːn] (von griech. ἑξα, héxa, „sechs“ und γονία, gonía, „Winkel; Ecke“) ist ein Polygon (Vieleck), bestehend aus sechs Ecken und sechs Seiten. Sind alle sechs Seiten gleich lang, spricht man… …   Deutsch Wikipedia

  • Extraterrestrial cyclone — Extraterrestrial cyclones are cyclones found on other planets.VenusVenus has two large long lived pairs of inverted anticyclones, one pair near each pole (polar vortexes), discovered in 2007 by the Venus Express probe.MarsOn April 27, 1999, a… …   Wikipedia

  • Гигантский гексагон — Гексагональное устойчивое атмосферное образование на северном полюсе Сатурна, открытое аппаратом Вояджер 1 и наблюдаемое снова в 2006 году аппаратом Кассини Гюйгенс. Гигантский гексагон  на сегодняшний день не имеющий строгого объяснения… …   Википедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”