- Dampfbahn
-
Die Dampflokomotive (kurz Dampflok) ist eine Bauform der Lokomotive, die mit Hilfe von Wasserdampf angetrieben wird. Neben der weit verbreiteten Regelbauart mit Dampferzeuger und Kolbendampfmaschinen gibt es Sonderbauarten wie feuerlose Lokomotiven, Zahnradlokomotiven, solche mit Einzelachsantrieb, Turbinen-, Kondens- und Hochdrucklokomotiven.
Dampflokomotiven waren die ersten selbstfahrenden, maschinell angetriebenen Schienenfahrzeuge und dominierten den Schienenverkehr von seiner Entstehung bis Mitte des 20. Jahrhunderts. Dampflokomotiven waren auch Träger der nunmehr einsetzenden rasanten Entwicklung der Transporttechnik sowie des nationalen und internationalen Handels. Mit dem Aufkommen modernerer Antriebstechnologien wurden die Dampflokomotiven wegen ihres schlechten Wirkungsgrades, des hohen Bedienungs-, Wartungs- und Reparaturaufwandes nach und nach von Diesel- und Elektrotriebfahrzeugen abgelöst. Im 21. Jahrhundert ist die Fertigstellung neuer Dampflokomotiven eine Ausnahme. Erwähnenswert ist die Fertigstellung der britischen 60163 Tornado im August 2008 durch den A1 Steam Locomotive Trust.
Inhaltsverzeichnis
- 1 Die Technik der Dampflokomotive
- 2 Geschichtlicher Überblick
- 3 Dampftraktion aktuell
- 4 Heizlokomotive
- 5 Rezeption in Kunst und Kultur
- 6 Siehe auch
- 7 Literatur
- 8 Weblinks
Die Technik der Dampflokomotive
Dampflokomotiven sind in einer unüberschaubaren Vielzahl verschiedener Typen und Varianten gebaut worden. Nachfolgend wird hauptsächlich die europäische Regelbauart des 20. Jahrhunderts mit klassischem Rohrkessel und Kolbendampfmaschine beschrieben. Davon abweichende Ausführungen sind im Artikel Dampflokomotive (Bauart) zu finden.
Konstruktiver Gesamtaufbau
Baugruppen einer Schlepptenderlokomotive mit der Achsfolge 1'C1' - 1 - Schlepptender mit Wasser- und Kohlenvorräten
- 2 - Führerstand
- 3 - Dampfpfeife
- 4 - Steuerstange
- 5 - Kesselsicherheitsventil
- 6 - Turbogenerator/Lichtmaschine
- 7 - Sandkasten mit Sandfallrohren
- 8 - Reglerzug
- 9 - Dampfdom
- 10 - Luftpumpe für die Druckluftbremse
- 11 - Rauchkammer
- 12 - Einströmrohr
- 13 - Rauchkammertür
- 14 - Handlauf
- 15 - Schleppachse
- 16 - Umlauf
- 17 - Lokomotivrahmen
- 18 - Bremshängeeisen
- 19 - Sandfallrohr
- 20 - Kuppelstange
- 21 - äußere Steuerung
- 22 - Treibstange
- 23 - Kolbenstange
- 24 - Dampfzylinder
- 25 - Schieber (innere Steuerung)
- 26 - Schieberkasten
- 27 - Feuerbüchse
- 28 - Heiz- und Rauchrohre
- 29 - Langkessel
- 30 - Überhitzerelemente
- 31 - Naßdampfventilregler
- 32 - Dampfsammelkasten
- 33 - Schornstein/Esse
- 34 - Spitzensignal
- 35 - Bremsschlauch
- 36 - Wasserkasten
- 37 - Kohlekasten
- 38 - Rostlage
- 39 - Aschkasten
- 40 - Achslager
- 41 - Ausgleichshebel
- 42 - Blattfederpaket
- 43 - Treib- und Kuppelradsätze
- 44 - Achslagerbock
- 45 - Standrohr und Blasrohrkopf (Ausströmung)
- 46 - Laufachse
- 47 - Kupplung
Dampflokomotiven der Regelbauart bestehen hauptsächlich aus dem Dampfkessel, in dem Dampf aus der Energie des Brennstoffes erzeugt wird, einer Kolbendampfmaschine, welche die Druckenergie des Dampfes in mechanische Bewegungsenergie umwandelt, dem Fahrgestell mit Rahmen und Radsätzen und einem Führerstand zur Bedienung der Maschine. Die erforderlichen Brennstoff- und Wasservorräte werden entweder auf der Lokomotive selbst (Tenderlokomotive) oder in einem, fest mit dieser gekuppelten Fahrzeug, dem Tender (Schlepptenderlokomotive) mitgeführt .
Auf oder am Lokomotivrahmen sind der Dampfkessel mit der darin eingebauten Feuerbüchse, die Dampfmaschine und der Führerstand montiert. Dieser Rahmen wird vom Treibradsatz, den über Kuppelstangen verbundenen Kuppelradsätzen und oft zusätzlichen antriebslosen Laufradsätzen getragen. Die Kolbendampfmaschine hat in der Regel zwei, aber auch drei und vier Zylinder, die seitlich außen am oder (und) innerhalb des Rahmens angebracht sind. Die oszillierenden Bewegungen der Kolbenstangen werden mittels der Treibstangen auf die Kurbelzapfen der Radsätze übertragen und so in eine Drehungbewegung umgewandelt.
Dampferzeugung und Energieumwandlung
Befeuerung
Dampflokomotiven beziehen ihre Primärenergie aus der Verbrennung der mitgeführten Brennstoffe. In den meisten Fällen sind dies Kohle oder Schweröl, aber auch Holz, Kohlenstaub, Torf und neuerdings Mineralöl. Der damit beheizte Kessel erzeugt aus Wasser den Dampf für die Dampfmaschine. Üblicherweise haben Dampflokomotiven eine Rostfeuerung mit flachem Feuerbett. Kohlenstaub, Schwer- oder Mineralöl benötigen keine Rostanlage sondern werden in einem speziellen Feuerkasten mit geeigneten Brennern verheizt. Schweröl muss mit Wärmetauschern vorgewärmt werden und wird im Brenner mit einem Heißdampfstrahl zerstäubt und verbrannt. Kohlenstaub wird mit Druckluft eingetragen oder durch den im vollständig geschlossenen Feuerkasten anstehenden Unterdruck eingesaugt. Aus der Schweiz mit ihren vielen elektrifizierten Strecken sind Rangierlokomotiven mit elektrischen Kessel(zusatz)heizungen bekannt.
Die Frischluftzufuhr für die Verbrennung erfolgt durch regelbare Luftklappen am Aschkasten in dem bei Verbrennung fester Brennstoffe auch die Verbrennungsrückstände gesammelt werden. Zur besseren Luftversorgung bei vollem Aschkasten sind an neuzeitlichen Rekolokomotiven Aschkästen der Bauart Stühren verbaut, die eine Luftzufuhr unabhängig von dessen Füllungsgrad, direkt unter die Rostlage ermöglichen. Bei anderen Feuerungsarten wird die erforderliche Luft durch spezielle Taschen, Schlitze oder durch die Brenner (Kohlenstaubfeuerung) selbst eingetragen.
Zur einwandfreien Feueranfachung und vollständigen Verbrennung ist das schon von Trevithick entwickelte, in der Rauchkammer angebrachte Blasrohr unentbehrlich. Der Maschinenabdampf wird durch eine genau ausgerichtete Düse, dem Blasrohrkopf, in den Schornstein geleitet. Der Abdampfstrahl füllt dabei den Querschnitt der Esse vollständig aus und reisst nach dem Injektorprinzip Rauch- und Pyrolysegase mit. Dadurch entsteht in der Rauchkammer ein Unterdruck, der sich durch die Rauch- und Heizrohre bis in die Feuerbüchse fortpflanzt. Die durch den Aschkasten und die Rostlage nachströmende Frischluft sorgt für die nötige Feueranfachung. Dabei ist vorteilhaft, dass sich dieses System selbst regelt, weil bei höherem Dampfverbrauch mehr Abdampf ausgeblasen wird und damit auch ein höherer Unterdruck entsteht. Weil der Abdampf aus der Dampfmaschine nur während der Fahrt zur Verfügung steht, ist für die Feueranfachung bei Stillstand oder Leerlauffahrten zusätzlich ein Hilfsbläser eingebaut. Dieser besteht aus einem zentrisch um den Blasrohrkopf gelegten Rohrring mit feinen Löchern und wird bei Bedarf mit Nassdampf direkt aus dem Kessel versorgt. Vor Einführung des Hilfsbläsers wurden Dampflokomotiven bei längeren Stillstandszeiten abgekuppelt und hin und her bewegt, um den erwünschten Kesseldruck aufrecht zu erhalten. Zur optimalen Feueranfachung und vollständigen, wirtschaftlichen Verbrennung ist eine absolut luftdichte Rauchkammer und dichte Rohrdurchführungen erforderlich.
Damit bei angestrengter Fahrt keine größeren Glutteile oder Verbrennungsrückstände durch den Schornstein ins Freie gelangen können, wird in der Rauchkammer ein Funkenfänger eingebaut. Dieser besteht aus einem Drahtgeflecht, welches das in die Rauchkammer ragende Schornsteinunterteil und den Blasrohrkopf vollständig umschließt. Ein zur Rohrwand hin pendelnd aufgehängtes Prallblech sorgt für die Selbstreinigung der Vorrichtung.
Sonderbauformen der Dampflokomotiven die nicht mit diesem System ausgerüstet sind (Turbinen-, Kondenslokomotiven), haben zur Feueranfachung besonders regelbare Saugzuggebläse. Zur Erhöhung des thermischen Wirkungsgrades von Dampflokomotiven hat der Österreicher Adolph Giesl-Gieslingen 1951 mit dem nach ihm benannten Giesl-Ejektor die klassische Saugzuganlage erheblich verbessert. Ergebnis waren Brennstoffeinsparungen von acht bis zwölf Prozent.
Dampfkessel
Für die Erzeugung des erforderlichen Wasserdampfes unter den beim Eisenbahnbetrieb ständig wechselnden Betriebsbedingungen eignet sich am besten ein Großraumwasserkessel mit vielen Heizrohren. Ein solcher Kessel hat eine große Verdampfungsoberfläche und ist unempfindlich gegen unregelmäßige Dampfentnahmen und den damit verbundenen Druck- und Wasserstandsschwankungen. Der klassische Dampflokomotivkessel besteht aus dem Hinterkessel mit der vollständig von einem Wassermantel umgebenen Feuerbüchse, dem meist aus mehreren Kesselschüssen bestehenden Langkessel und der Rauchkammer mit eingebauter Saugzuganlage und Schornstein zur Feueranfachung. Bei diesem Konstruktionsprinzip handelt es sich um den sogenannten Stephensonschen Röhrenkessel.
In der Feuerbüchse wird die bei der Verbrennung erzeugte Wärme direkt an die Feuerbüchswände und das dahinter umlaufende Kesselwasser abgegeben. Man spricht hier von der Strahlungsheizfläche. Die entstehenden warmen Rauchgase durchströmen dann die im Langkessel eingebauten Heizrohre und geben dabei die Wärme an die Rohrwandungen ab. Die Summe der Fläche der Rohrwandungen bildet die Rohrheizfläche. Bei Heißdampflokomotiven sind zusätzlich zu den Heizrohren noch Rauchrohre mit wesentlich größerem Durchmesser eingebaut. In diesen Rauchrohren sind die Überhitzerelemente eingeschoben, in denen der im Kessel erzeugte Dampf getrocknet und weiter erhitzt wird. Der nunmehr im Lokomotivbetrieb, bis zu 400 Grad Celsius warme Heißdampf sorgt wegen seines besseren Kondensations- und Expansionsverhaltens für einen höheren Wirkungsgrad der Lokomotivdampfmaschinen.
Zur Entnahme möglichst trockenen Dampfes und zur Vermeidung des Überreißens von Kesselwasser befinden sich auf dem Scheitel des Langkessels ein oder zwei Dampfdome. In einem Dampfdom ist meist der für die Regulierung der Dampfzufuhr der Maschine zuständige Naßdampfregler eingebaut. Der erzeugte Nassdampf mit einer vom Kesselüberdruck abhängigen Temperatur von 170 bis 200 Grad Celsius ist eine Mischung aus Dampf und feinsten Wassertropfen.
Deutsche Dampflokomotiven arbeiten in der Regel mit Kesselüberdrücken von 12 bis 16 bar. Mitteldrucklokomotiven mit 20 und 25 bar konnten sich ebenso wenig durchsetzen wie Hochdrucklokomotiven mit bis zu 400 bar Kesseldruck. Der Kesseldruck wird durch ein bis drei Kesselsicherheitsventile verschiedener Bauformen begrenzt, die bei Überschreiten des zulässigen Maximaldruckes Dampf in die freie Umgebung kontrolliert abblasen.
Moderne Dampflokomotiven haben einen effizienteren Verbrennungskammerkessel. Sonderbauarten wie der Flammrohrkessel, der Brotankessel oder der Wellrohrkessel konnten sich nicht durchsetzen.
Kolbendampfmaschine der Dampflok
Zylinder und Kolben
Bei Lokomotiven mit Nassdampfregler passiert der im Dampfdom entnommene Dampf zunächst das Reglerventil und gelangt von dort in die Nassdampfkammer des Dampfsammelkastens in der Rauchkammer. Von hier wird er in die Überhitzerrohre geleitet und dort auf Temperaturen von etwa 370 Grad Celsius erhitzt. Der überhitzte Dampf gelangt dann in die Heißdampfkammer des Dampfsammelkastens und von dort in das Haupteinströmrohr der Dampfmaschine. Wird anstelle des Nassdampfreglers ein Heißdampfregler verwendet, so gelangt der überhitzte Dampf von der Heißdampfkammer des Dampfsammelkastens über das Heißdampfreglerventil zum Haupteinströmrohr der Dampfmaschine. In den Zylindern der Kolbendampfmaschine dehnt sich der Dampf aus und bewegt dabei die Kolben. So wird die im Dampf gespeicherte Wärmeenergie in mechanische Energie umgewandelt.
Die Kolben in den Zylindern der Dampfmaschine werden abwechselnd von vorn und von hinten mit Dampf beaufschlagt. Die hin- und hergehende Bewegung der Kolben wird über die Treibstangen auf die Treibräder übertragen und damit in eine rotierende Bewegung umgewandelt.
Damit die Dampflok auch bei Totpunktlage einer Kurbelstellung anfahren kann, sind die Kurbelzapfen der gegenüberliegenden Räder einer Achse gegeneinander versetzt. Der Versatzwinkel beträgt bei Zwei- und Vierzylindermaschinen eine Vierteldrehung bzw. 90°, bei Dreizylindermaschinen eine Dritteldrehung bzw. 120°.
Steuerung
→ Hauptartikel: Steuerung (Dampfmaschine)
Das Steuersystem besteht aus Schwinge, Gegenkurbel, Schieberschubstange, Voreilhebel, Kreuzkopf, Steuerzylinder mit Kolbenschieber, Dampfzylinder und Steuerstange.
Die Anpassung der Leistung und damit des Dampfverbrauches an die wechselnden Betriebsbedingungen wird mit einer zusätzlichen Steuerung realisiert. Deren Hauptbestandteile sind die an den Arbeitszylinder angesetzten Schieberzylinder mit Schieberkolben. Sie steuern Seite und Menge des Dampfeintritts in den Arbeitszylinder. Kolbenschieber-Steuerungen haben im Gegensatz zu Flachschieber- Steuerungen eine innere Einströmung.
Im Betrieb eilen die Steuerschieber der Arbeitskolbenbewegung jeweils wechselnd voraus. Der Schieber öffnet den Zylinder, Dampf strömt ein. Nach etwa einem Drittel des Kolbenweges sperrt der Schieber den Einstrom ab. Die im Dampf vorhandene Energie treibt den Kolben durch Expansion weiter bis zu seinem Totpunkt. Die fortlaufende, wechselnde Schieberbewegung wird durch ein Steuergestänge bewirkt, das an das Antriebsgestänge angeschlossen ist. Durch variables Einstellen der Steuerung lässt sich z. B. eine hohe Anfahrzugkraft durch lange Dampffüllung über den Kolbenweg erreichen. Durch Verminderung der Füllzeiten bei hoher Geschwindigkeit wird der Dampfverbrauch pro Kolbenhub auf das notwendige Maß reduziert. Da die Dampfdehnung jetzt stärker ausgenutzt wird, verbessert sich die Energieeffizienz .
Der Triebfahrzeugführer stellt die Steuerung vom Führerstand aus mit einer Handkurbel ein, wodurch an der Schwinge der Angelpunkt des Steuerungsgestänges und damit der Arbeitsweg des Schiebers verstellt wird. Das zweite Steuerelement neben der Schieberverstellung ist das Reglerventil auf dem Führerstand, das den Dampfdruck zu den Zylindern einstellt.
Die Steuerung hat damit zwei Endpunkte der Einstellung: zum einen die voll ausgelegte Steuerung mit einem Dampfdruck, bei dem die Räder der Lok gerade noch nicht durchdrehen, was beim Anfahren wichtig ist. Zum anderen die minimal ausgelegte Steuerung mit vollem Dampfdruck, um mit der maximal möglichen Expansion in den Zylindern das wirtschaftliche Optimum zu erzielen.
Dazwischen liegen zahlreiche Betriebszustände, wobei es auf die Erfahrung und das Fingerspitzengefühl des Lokführers ankommt, mit der Steuerungseinstellung den Punkt der optimalen Energieausnutzung zu finden. Durch Umsteuern der Füllreihenfolge kann die Fahrtrichtung umgekehrt werden. Einen gegengesteuerten Dampfdruck verwendet man auch als Gegendampfbremse.
Massenausgleich
Die hin- und hergehenden Massen der Kolben sowie auch der Kolben-, Treib- und Kuppelstangen verursachen bei der Umsetzung in die Drehbewegung erhebliche Unwuchten, die zu einem unruhigen Lauf der Lokomotive führen. Die Kolbenbewegungen einer zweizylindrigen Maschine gleichen sich dabei nicht gegenseitig aus, weil sie nicht um eine halbe, sondern um eine Viertelperiode versetzt arbeiten. Mit Ausgleichsgewichten an den Rädern können diese Kräfte teilweise, jedoch nicht vollständig ausgeglichen werden.
Die lediglich durch die Kuppelstangen und Kurbelzapfen entstehende Unwucht kann durch Ausgleichsgewichte vollständig aufgehoben werden, so dass das Problem z. B. bei älteren Elektrolokomotiven mit Stangenantrieb nicht auftritt. Zum Ausgleich der hin- und hergehenden Massen einer Kolbendampfmaschine müssen die Ausgleichsgewichte jedoch vergrößert werden, was wiederum zu einer Unwucht der Räder führt, welche die Schienen belastet und bei hohen Drehzahlen sogar zum Verlust des Rad-Schiene-Kontakts führen kann, dem sogenannten Springen der Räder. Ein praxistauglicher Kompromiss bei der Auslegung des Massenausgleichs war daher wichtig bei der Konstruktion von schnell fahrenden Lokomotiven. In der Regel werden nur etwa 30 bis 50 % der hin- und hergehenden Massen ausgeglichen. Bei niedrigen Geschwindigkeiten und geringem Komfortanspruch, wie etwa beim Güterverkehr hat man teilweise auch ganz darauf verzichtet. Das Problem des Massenausgleichs kann durch den Bau von Lokomotiven mit mehr als zwei Zylindern verringert werden. Fast alle Schnellfahrlokomotiven hatten deshalb Triebwerke mit drei oder vier Zylindern.
Laufwerk der Dampflokomotive
Radsätze
Eisenbahnfahrzeuge haben nur in den seltensten Fällen lose auf den Achsen laufende Räder. Grundsätzlich sind hier auf einer Radsatzwelle (fälschlicherweise auch Achswelle genannt) die beiden Radkörper verdrehsicher montiert. Im klassischen Dampflokomotivbau wurden die Radkörper vorwiegend als Radsterne (Speichenräder) ausgebildet. Auf den Radsternen werden Radreifen mit dem eigentlichen Laufprofil (Spurkranz, Lauffläche) aufgeschrumpft. Diese komplette Einheit, im Wagenbereich auch noch mit Achslagern komplettiert, nennt man Radsatz. Bei der Dampflokomotive unterscheidet man zwischen Treib-, Kuppel- und Laufradsätzen. Treib- und Kuppelradsätze sind angetriebene Radsätze. Während der Treibradsatz zur Aufnahme der von den Treibstangen übertragenen Kräfte besonders massiv ausgebildet und fest im Lokomotivrahmen gelagert wird, können Kuppelradsätze leichter und im Rahmen seitenbeweglich ausgeführt werden. Die von der Dampfmaschine erzeugte lineare Bewegung wird am Treibradsatz als Element des Kurbeltriebes in eine Drehbewegung umgewandelt. Dabei erfolgt der Kraftfluss von den Treibstangen auf die Treibzapfen oder die als Kurbelwelle ausgebildete Radsatzwelle und über Kuppelstangen auf die Kuppelzapfen eventuell vorhandener Kuppelradsätze. Als Sonderbauform wurden bei einigen langsamfahrenden mehrachsigen Lokomotivtypen zur Verbesserung der Kurvenläufigkeit die seitenbeweglichen äußeren Kuppelradsätze durch Zahnradgetriebe angetrieben. Der so genannte Luttermöller-Achsantrieb bewährte sich wegen seines komplizierten Aufbaus und der hohen Reparaturanfälligkeit jedoch nicht.
Während die Dampflokomotiven der Anfangszeit noch mit ein oder zwei gekuppelten Radsätzen auskamen, musste der mit der Weiterentwicklung der Maschinen einhergehende Zuwachs an Größe und Masse der Lokomotiven durch Einbau weiterer Kuppel- oder Laufradsätze entgegnet werden. Nur so war eine gleichmäßige Verteilung der Fahrzeugmasse, abhängig von der zulässigen Achslast, auf die Fahrbahn möglich. Die Größe der Treib- und Kuppelradsätze war durch das Lichtraumprofil und den konstruktiven Aufbau der Lokomotive begrenzt. Ein weiteres Kriterium war die theoretisch maximal mögliche Kolbengeschwindigkeit von 7 bis 9 m/s und die dadurch erreichte Drehzahl der Treibradsätze. Bis dahin meinte man, den erforderlichen Massenausgleich des Kurbeltriebes noch zu beherrschen. Erfahrungsgemäß galten maximale Drehzahlen von 400 min-1 für Radsätze in herkömmlichen Triebwerken, bei denen die Kraftübertragung durch Treib- und Kuppelstangen erfolgte. Oberhalb dieser Drehzahlgrenze erwarteten die Ingenieure massive Probleme mit dem Massenausgleich und der Lagerungen der bewegten Teile. Die maximale Obergrenze mit 2300 mm Laufkreisdurchmesser galt an neuzeitlichen Dampflokomotiven in Deutschland mit der Lokomotive der DRG-Baureihe 61, der heutigen 18 201 als erreicht.
Zur Erreichung eines höheren Drehmoments haben leistungsstarke Güterzuglokomotiven viele Kuppelradsätze mit relativ kleinen Rädern. Ebenso wie die maximale Achslast ist aber auch die Anzahl der kuppelbaren Radsätze in einem starren Lokomotivrahmen begrenzt. Mit mehrgliedrigen Rahmen und anderen Sonderlösungen wurde versucht, so viele Treibradsätze wie möglich einzubauen. Die bekanntesten Lokomotivbauarten mit mehrgliedrigen Fahrwerken sind die Mallet-Lokomotiven, die Bauart Meyer sowie die Bauarten Garratt und Fairlie.
Leistungsfähige Kessel erreichen Längen und Massen, die nicht alleine von den Kuppelachsen getragen werden können. Außerdem sind die Laufeigenschaften von Maschinen mit zu großen überhängenden Massen bei höheren Geschwindigkeiten nicht mehr zufriedenstellend. Aufgefallen ist das schon sehr früh bei den Stephensonschen Longboiler-Maschinen. Man begann deshalb damit, die Lokomotiven mit zusätzlichen, nicht angetriebenen Laufachsen auszurüsten. Damit ließen sich die überhängenden Massen von Rauchkammer und Zylinderblöcken sowie vom Stehkessel wirkungsvoll reduzieren. Hintere Laufachsen ermöglichen es außerdem, Feuerbüchse und Aschkasten hinter den Kuppelachsen anzuordnen und so größer und leistungsfähiger auszubilden. Zur Verbesserung des Bogenlaufes wurden die Laufachsen sehr bald seitenverschiebbar und später in Form der Bisselachse radial einstellbar. Rückstelleinrichtungen verbessern die Führung des Fahrzeuges im Bogen, besonders, wenn die Führungskräfte auf mehrere Achsen verteilt werden. Deshalb wurden besonders für schnellfahrende Maschinen ein führendes Laufdrehgestell verwendet, oder man verband eine radial einstellbare Laufachse mit der ersten, seitenverschiebbaren Kuppelachse in einem Krauss-Helmholtz-Lenkgestell. Wegen des nötigen Platzes für den Aschkasten sind die hinteren Laufachsen von Schlepptenderlokomotiven meist deichsellose Adamsachsen oder außengelagerte Delta-Schleppgestelle. Bei Tenderlokomotiven sind identische Laufeigenschaften in beiden Richtungen in der Regel wichtiger, deshalb verfügen diese häufig über ein symmetrisches Laufwerk. Das Lenkgestell unter dem Aschkasten nimmt man in diesem Fall in Kauf.
Hilfsaggregate
Druckluft für die Bremsen
Die Bremsen von Dampflokomotiven bestehen zumeist aus Klotzbremsen an den großen Treibrädern, die zunächst von Hand, später mit Dampf und ab etwa 1900 hauptsächlich mit Druckluft betrieben wurden. Zur Drucklufterzeugung erhielten Dampflokomotiven eine „Luftpumpe“ oder einen Kompressor sowie verschiedene Haupt- und Hilfsluftbehälter für die Druckluftbevorratung.
Dampf für die Zugheizung
Zur komfortablen Beheizung von Reisezugwagen rüstete man diese in der weiteren Entwicklung mit Dampfheizeinrichtungen aus. Den dazu erforderlichen Heizdampf erhielten die einzelnen Heizungsanlagen von der Lokomotive über eine, durch alle Wagen gehende Heizleitung. Auf der Lokomotive wird dazu Naßdampf mittels Anstellventil direkt aus dem Kessel entnommen und über einen, vom Führerstand aus bedienbaren Dreiwegehahn oder ein Umschaltventil (auf Einheitslokomotiven), zu dem jeweils vorderen oder hinteren Heizanschluß der Lokomotive geleitet. Ein Sicherheitsventil (4,5–5 bar) und ein Druckmesser vervollständigen die triebfahrzeugseitige Dampfheizungsanlage.
Elektrische Stromversorgung
Mit der Einführung der elektrischen Beleuchtung und später von Zusatzeinrichtungen wie der Zugbeeinflussung wurde es erforderlich, eine dauerhafte und betriebssichere Elektroenergieversorgung zu gewährleisten. Bei ersten Versuchen benutzte man kleine, auf dem Tender aufgestellte Kolbendampfmaschinen, deren Regelung jedoch vom Heizer zu viel Aufmerksamkeit forderte. Praxistauglich wurde die Stromversorgung erst durch die Einführung von fliehkraftgeregelten Turbogeneratoren. Wegen der freizügigen Einsetzbarkeit von Lokomotiven und Wagen setzte sich bei Regelspur-Reisezugwagen die Versorgung über Achsgeneratoren durch. Deshalb verfügen regelspurige deutsche Dampflokomotiven nur über Generatoren mit 0,5 kW für die Eigenversorgung. Die für die punktförmige Zugbeeinflussung erforderlichen Wechselspannungen mit Frequenzen von 500, 1000 und 2000 Hertz wurden anfänglich durch aufgesetzte Zusatzwicklungen erzeugt. Bei geschlossenen Netzen, beispielsweise den Schmalspurbahnen in Sachsen, werden wesentlich größere Turbogeneratoren mit einer Leistung von 10 kW eingesetzt. Diese versorgen den gesamten Wagenzug.
Versorgung mit Betriebsstoffen
Wasserversorgung
Im Fahrbetrieb wird der im Kessel erzeugte Dampf aus den Zylindern über den Schornstein oder beim Anfahren über Zylinderventile in die Umgebung entlassen. Daher muss der Wasservorrat im Kessel ständig nachgefüllt werden. Dazu wird ein Wasservorrat in Zusatztanks im Rahmen, seitlich des Kessels in Tanks oder bei größerer Menge in einem Schlepptender mitgeführt.
Für lange Nonstop-Fahrten wie etwa die des Flying Scotsman von London nach Edinburgh oder die der New York Central Railroad wurden Schöpfrohre verwendet, welche während der Fahrt in spezielle Tröge zwischen den Schienen abgesenkt wurden. Der durch die Fahrgeschwindigkeit entstehende Staudruck drückte das Wasser über die Rohre in den Tank des Tenders.
Für die Fahrt über weite, wasserarme Strecken wurde in den 1930er Jahren in Argentinien, in der Sowjetunion und später auch in Südafrika mit Kondenstendern experimentiert, in denen ein großer Teil des Abdampfes wieder kondensiert werden kann. In Deutschland wurden viele Lokomotiven der Baureihe 52 mit dieser Technik gebaut. Dies führte teilweise zwar zu einer Wasserersparnis von über 90 %, war wegen des hohen Unterhaltungsaufwands in Gebieten mit ausreichenden Wasserreserven jedoch nur selten wirtschaftlich. Weil der Abdampf bei Kondenslokomotiven nicht für die Feueranfachung mittels Blasrohr zur Verfügung stand, war ein besonderes Saugzuggebläse in der Rauchkammer erforderlich.
In der Frühzeit geschah das Speisen des Kessels mit Wasser meist mit Plungerpumpen oder Fahrpumpen. Diese wurden über eine Exzenterwelle oder eine Kurbelwelle während der Fahrt der Lokomotive betrieben. Der Vorteil dieser Methode ist, dass sich die Fördermenge annähernd proportional zum zurückgelegten Weg verhält. Die Anpassung der Fördermenge geschah durch einen regelbaren Bypass. Bei längerem Stillstand oder bei längeren Fahrten bei starker Steigung (erhöhter Dampfbedarf) musste die Lokomotive vom Zug abkuppeln und auf einem freien Gleis hin- und herfahren, bis der Wasserstand wieder die gewünschte Höhe erreicht hatte.
Moderne Dampfloks müssen zwei unabhängig voneinander arbeitende Speiseeinrichtungen haben, um immer den richtigen Wasserstand im Kessel zu gewährleisten. Für die Auffüllung des unter Druck stehenden Kessels werden Kolbenspeisepumpen und Injektorpumpen verwendet. Bei Kolbenpumpen treibt ein Dampfkolben einen kleinen Wasserkolben an, der das Wasser in den Kessel drückt. Bei der Injektor- oder Dampfstrahlpumpe reißt ein Dampfstrahl Wasser in der Injektorkammer mit, erwärmt es und drückt es in den Kesselraum.
Nachteilig bei allen Arten von Kolbenpumpen ist insbesondere das Speisen des Kessels mit kaltem Wasser, ohne jede Vorwärmung. Im Bereich des Speisewassereintritts in den Kessel kam es durch die Temperaturdifferenz zu großen Wärmespannungen im Material. Ab etwa 1900 wurde das kalte Speisewasser des Tenders durch sogenannte Vorwärmer geleitet und vom Abdampf auf etwa 80 bis 90 Grad Celsius vorgewärmt. Weil das Kaltspeisen auf jeden Fall vermieden werden muss und Vorwärmer wegen ihrer Abhängigkeit vom Abdampf nur während der Fahrt funktionieren, ist es vorgeschrieben, dass eine der beiden Kesselspeisevorrichtungen eine Dampfstrahlpumpe sein muss. In einigen Ländern, beispielsweise in der ehemaligen UdSSR, verzichtete man weitgehend auf Kolbenspeisepumpen und rüstete fast alle Lokomotiven nur mit Strahlpumpen aus.
Der korrekte Wasserstand im Dampfkessel wird ebenfalls mit zwei unabhängig voneinander arbeitenden Schaugläsern sowie Probierhähnen vom Heizer der Lokomotive kontrolliert. Ein zu niedriger Wasserstand kann zu einem Kesselzerknall führen, ein zu hoher Wasserstand birgt die Gefahr des Mitreißens von flüssigem Wasser mit anschließenden schweren Schäden am Überhitzer und in den Zylindern. Besonders im Zylinder verursacht schon die kleinste Menge Wasser den Wasserschlag: Der Freiraum zwischen dem Kolben im Totpunkt und dem Zylinderboden ist so gering, dass der sich bewegende Kolben durch das nicht komprimierbare Wasser im Zylinder den Zylinderdeckel regelrecht absprengt.
Um die Betriebssicherheit und die Wirtschaftlichkeit der Dampflokomotive zu gewährleisten, wird das Kesselspeisewasser entsprechend aufbereitet. Insbesondere wird der Kesselsteinbildung vorgebeugt, indem die Kesselsteinbildner durch chemische Zusätze im Kessel zu Boden sinken (ausfällen) und dort eine schlammartige Schicht bilden (Innere Speisewasseraufbereitung). Durch das Abschlammventil kann dieser Bodensatz regelmäßig, auch während der Fahrt durch den Heizer, ausgeschwemmt werden. Zusätzlich wird der Kessel in größeren Abständen ausgewaschen.
Brennstoffversorgung
Die verwendeten Brennstoffe (überwiegend Kohle, teils auch Kohlenstaub,Holz, Torf oder verschiedene Öle) werden, ebenso wie der Wasservorrat in Behältern auf der Lokomotive oder im Schlepptender mitgeführt. In der Regel wurden Kohle und andere feste Brennstoffe vom Lokomotivheizer manuell oder mit einer Schaufel dem Vorratsbehälter aufgenommen und durch das Feuerloch in die Feuerbüchse befördert.
Einzelne großen Lokomotivbauarten wurden zur Entlastung des Bedienpersonals auch mit einer maschinellen Beschickungen der Feuerung, den sogenannten Stoker ausgerüstet. Die Stokeranlagen bestanden meist aus Förderschnecken, die den Brennstoff vom Kohlenbehälter durch Rohrleitungen in die Feuerbüchse beförderten. Die Förderschnecken wurden von einer Dampfmaschine angetrieben und waren, entsprechend dem Brennstoffbedarf, fein regel- und umsteuerbar.
Bei Ölfeuerung wird der vorgewärmte Brennstoff durch einen oder mehrere Brenner (je nach Bauart unterschiedlicher Anordnung und Ausführung) mittels regelbarem Dampfstrahl in den Feuerkasten eingeblasen. Anders funktionieren Kohlenstaublokomotiven. Hier wird der feingemahlene Kohlenstaub durch den in der Feuerkiste herrschenden Unterdruck oder mittels Druckluft eingetragen. Gelegentlich wurde bei Speicherdampflokomotiven in Eisenwerken eine rotglühende Roheisen-Bramme in der Lokomotive deponiert. Mit dieser Heizwärme konnte die Lok etwa zwei Stunden unter den Hochöfen die Torpedowagen verschieben. Speicherlokomotiven konnten unter dem Hochofen auch direkt mit Dampf „betankt“ werden.
Führung der Lokomotive
In der Regel befindet sich das Führerhaus einer Dampflokomotive hinten auf dem Rahmen hinter der Feuerbüchse. Von dort wird sie von einem Zwei-Mann-Team gesteuert. Der Lokführer hat seinen festen (Sitz-) Platz auf der Seite, auf der sich die Fahrt- und Bremsregler befinden. In Kontinentaleuropa ist dies üblicherweise rechts, auf den britischen Inseln war dies meist die linke Seite. Er beobachtet von dort die Strecke und die Signale und steuert den Lauf der Lok und des Zuges. Der Heizer überwacht und betreibt vor allem die Feuerung und Dampferzeugung (Brennstoff- und Wassernachschub, Druckerzeugung) durch das Einbringen von Brennstoff in die Feuerbüchse. Der Heizer unterstützt den Lokführer bei der Signalbeobachtung durch Meldungen und Bestätigungen. Für die letztere Funktion hat der Heizer einen (Sitz-)Platz auf der dem Lokführer gegenüberliegenden Seite des Führerhauses.
Anfänglich standen Lokführer und Heizer auf einer ungeschützten Plattform hinter der Feuerbüchse. Mit zunehmenden Geschwindigkeiten wurde es unerlässlich, einen Windschutz und zumindest ein kurzes Dach anzubauen. Die Einführung des geschlossenen Führerhauses geht auf den Eisenbahnpionier Max Maria von Weber zurück, der die Strapazen des Lokomotivführers und des Heizers vor allem in der winterlichen Jahreszeit aus eigener Anschauung kannte und in seinem literarischen Werk beschrieb. Sitzplätze wurden jedoch auch dann noch als „unerhörter Komfort“ und als der Aufmerksamkeit zur Streckenbeobachtung abträglich angesehen.
Zur Bildung von Wendezügen wurde mit Signalvorrichtungen zwischen Steuerwagen und schiebender Lokomotive experimentiert, die in ihrer Funktionsweise an die Maschinentelegrafen aus der Seefahrt erinnern. Erfolgreich wurde dies 1936 bei den Stromlinienzügen der Lübeck-Büchener Eisenbahn praktiziert. Dies erforderte jedoch eine feste Zugzusammenstellung, die die freizügige Verwendung der Lokomotiven einschränkte und deshalb nicht weiter verfolgt wurde.
Standards, Entwicklungsgrenzen, Sonderbauformen
Standard-Entwicklungen
Die verbreitetste und einfachste Bauform der Dampflokomotive hatte vorn ein bis zwei Laufrad-Sätze und darauf folgend drei bis fünf miteinander gekuppelte Treibachsen sowie eventuell noch einen Laufradsatz unter dem Führerhaus. Die Dampfmaschine bestand aus einem Kessel mit Nassdampf- oder Heißdampferzeugung und zwei doppelt wirkenden Zylindern mit einfacher Dampfdehnung.
In den 1920er Jahren entstanden in Deutschland ELNA-Dampflokomotiven. Die Abkürzung ELNA steht für Engerer Lokomotiv-Normen-Ausschuß. Die Lokomotiven sollten durch Vereinheitlichung wirtschaftlicher produziert und betrieben werden können.
Unter dem Namen Einheitslokomotiven wurden ab 1925 unter der Regie der Deutschen Reichsbahn, unter Leitung des früheren Reichsbahndezernenten Richard Paul Wagner, Dampflokomotiven entwickelt und gebaut. Man hatte sich entschlossen, bewährte Länderbahnlokomotiven durch Neuentwicklungen zu ersetzen. Hauptgründe waren die Verwendung einheitlicher Bauteile und eine Normierung. Einheitliche Lager, Speisepumpen, Rauchrohre, Zylinderblöcke, Armaturen machten die Austauschbarkeit einfacher und den Unterhalt günstiger. Die erste Einheitslok war die Baureihe 01 als 2’C1’h2 . Spätere Lokomotiven der Deutschen Bundesbahn wurden auch als Standard-Typen in großen Serien gebaut.
Allgemeine Grenzen
Baugrößen
Die Leistung der Dampflokomotive wird bestimmt durch Kolbendurchmesser, Dampfdruck, Zylinderzahl, Anzahl der Treibräder und deren Durchmesser. Alle diese Parameter sind jedoch nur begrenzt veränderbar.
Der Raddurchmesser ist entscheidend für die Höchstgeschwindigkeit. Er kann jedoch nicht beliebig gesteigert werden, ohne die Größe des Kessels und damit die Zugkraft zu beeinträchtigen. Die Unwuchten der bewegten Massen im Kurbeltrieb können auch nicht vollständig ausgeglichen werden. Sie führen bei höheren Geschwindigkeiten zu unruhiger Fahrt.
Die meisten moderneren Dampfloktypen haben 16 bis 20 bar Betriebsdruck. Dampfloks mit höherem Dampfdruck (bis zu 60 bar) erforderten langfristig aufwändigere Instandhaltungsarbeiten und wurden daher nicht weiterentwickelt.
Baulich bedingt lässt sich die Zylinderzahl bei Standard-Typen nur auf derer vier steigern. Dabei gibt es Drillings- und Vierlingsmaschinen, bei denen alle Zylinder Hochdruckdampf erhalten, und Verbundmaschinen mit Hochdruck- und nachgeordneten Niederdruckzylindern. Mit dem Verbundprinzip wird die thermische Energie des Dampfes besonders gut ausgenutzt.
Da damit jedoch die Instandhaltungskosten stiegen, haben sich letztlich Loks mit zwei oder drei Zylindern und nur einer Expansionsstufe durchgesetzt. Vor allem Eisenbahnen in den USA, England und Norddeutschland, wo Kohle relativ günstig und leicht verfügbar war, verzichteten auf den höheren Wirkungsgrad. Umgekehrt verfuhren Frankreich, die Schweiz und die süddeutschen Eisenbahnen, die bis zum Ende der Dampftraktion bzw. bis zum Ende ihrer Eigenständigkeit Verbundlokomotiven beschafften. Auch die DB modernisierte noch in der Phase des einsetzenden Traktionswandels 30 Vierzylinder-Verbundlokomotiven zur Baureihe 18.6.
Leistungen
Unter den mitteleuropäischen Bedingungen entstanden Lokomotiven, die Spitzengeschwindigkeiten bis zu 200 km/h erreichten (Deutsche Reichsbahn Lok 05 002, und die britische LNER-Lok Mallard). Mit Verbundmaschinen wurden Leistungen bis zu 5.300 PS (4.000 kW) erreicht (SNCF-Baureihe 242 A1). Bezogen auf das Leistungsgewicht (Masse pro Leistung) galt die von André Chapelon umgebaute 240P der französischen SNCF als leistungsfähigste Lokomotive.
Die weltweit größten Dampfloks waren die Mallet - und Triplex-Lokomotiven amerikanischer Bahnen. Unter Rahmen und Tender hatten diese Lokomotiven bis zu drei eigenständige Fahrwerke mit jeweils eigenen Kolbendampfmaschinen. Praktisch alle großen und modernen US-amerikanischen Dampfloks lagen im Leistungsbereich von 5.000 bis 8.000 PS (4.000 bis 6.000 kW), was durch vergleichsweise große Abmessungen und Gewichte ermöglicht wurde.
Die Baureihe S-1b („Niagara“) der New York Central beförderte im täglichen Betrieb 22 Pullman-Schnellzugwagen von über 1.600 t Gewicht in der Ebene mit 161 km/h. Bei Versuchsfahrten wurden mit dieser Last sogar 193 km/h erreicht. Heutige IC- und EC-Züge sind demgegenüber nur etwa halb so schwer. Die Baureihe S-1b hält auch den Rekord der monatlichen Laufleistungen für Dampfloks. Mit Zügen wie den oben erwähnten, die auf der 1.485 km langen Strecke von Harmon, N.Y. nach Chicago ohne Lokwechsel fuhren, wurden über 44.000 km erreicht.
Der sehr personalintensive Unterhalt der Dampfloks (Bedienung der Lok durch zwei Mann, Auswaschpersonal und weitere), die sehr intensive und aufwändige Prüfung und Unterhalt der Lok (2-tägliches bis maximal wöchentliches Auswaschen der Kessel), die vom TÜV vorgeschriebenen Untersuchungen der Dampfkessel wegen der Gefahr der Kesselexplosionen und die parallel einhergehende Vervollkommnung der Elektroloks sowie der Dieselloks führten in den 1970er Jahren bei fast allen Bahnen der Welt zur Ausmusterung der bewährten Technik. Aber auch der geringe Wirkungsgrad, der meist bei etwa 8 bis 10 Prozent lag, und die Verschmutzungen durch Kohlenruß führten dazu, dass die Dampfloks immer mehr von der Bildfläche verschwanden. Allerdings waren die konstruktiven Möglichkeiten der Dampflokomotive zu dieser Zeit noch nicht vollständig ausgereizt worden.
Sonderentwicklungen
Höhere Anforderungen, günstige oder ungünstigere Bedingungen, haben zu Sonderbauformen von Dampflokomotiven geführt. Hier sind vor allem die zu Beginn in Frankreich und Deutschland sehr verbreiteten Crampton-Lokomotiven, die später erscheinenden Mallet- und Garratt-Lokomotiven sowie Antriebs-Varianten zu nennen. Eine umfangreiche Übersicht ist unter Dampflokomotive (Bauart) aufgelistet.
Geschichtlicher Überblick
Die Dampflokomotive war die ursprüngliche und lange Zeit vorherrschende Lokomotivbauart. Sie war das erste Zugmittel, das größere Leistung mit kompakter Bauform vereinen konnte und so die erfolgreiche Verbreitung des Eisenbahn-Systems bewirkte.
Vorläufer-Entwicklungen
Die Entwicklung der Dampflokomotive stützte sich auf mehrere Vorläufer-Entwicklungen. Die erste Stufe war die von Thomas Newcomen erfundene Dampfmaschine, bei der ein Schwungrad den Zylinder nach jedem Arbeitshub in die Ausgangslage zurückbrachte. Der nächste Schritt erfolgte, als James Watt den Dampf wechselweise auf beide Seiten des Kolben wirken ließ. Bis dahin arbeiteten die Dampfmaschinen mit nur geringem Überdruck gegenüber dem atmosphärischen Umgebungsdruck. Als Richard Trevithick eine Dampfmaschine entwickelte, die mit einem drei- bis viermal höheren als dem atmosphärischen Druck arbeitete, wurde es möglich, eine leistungsfähige Arbeitsmaschine zu bauen, die hinreichend kompakt war, um auf ein Fahrzeug zu passen. Dies führten erstmals Nicholas Cugnot 1769 sowie 1801 und 1803 auch Richard Trevithick durch, die jeweils einen Straßen-Dampfwagen bauten. Damit wurde mit Hilfe der Dampfmaschine eine räumlich unbegrenzte Fahrbewegung möglich, und es war dann nur noch ein kurzer Schritt, die bereits in den Bergwerken bestehenden dampfbetriebenen Seilzuganlagen durch einen auf die Schienen gestellten Dampfwagen zu ersetzen.
Erste Dampflokomotiven auf Schienen
1804 baute dann Richard Trevithick die erste auf Schienen fahrende Dampflokomotive. Sie erwies sich als funktionsfähig, doch die für ihr Gewicht nicht ausgelegten gusseisernen Schienen zerbrachen unter dieser Lokomotive.
Um diese Zeit gab es in englischen Bergwerksanlagen in Cornwall und um das nordostenglische Kohlenrevier um Newcastle upon Tyne mehrfache Entwicklungsversuche zu Dampflokomotiven, u. a. von Timothy Hackworth ab 1808, John Blenkinsop 1812, William Hedley 1813, George Stephenson 1814 und anderen. Im Jahr 1825 wurde die von Edward Pease initiierte Eisenbahnstrecke zwischen Stockton und Darlington, England, mit einer Lokomotive von George Stephenson eröffnet und gleichzeitig der erste Passagier-Transport mit einem lokomotiv-gezogenen Zug durchgeführt.
Für die geplante Bahn zwischen Liverpool und Manchester wurde im Oktober 1829 das berühmte Rennen von Rainhill durchgeführt, bei dem die bestgeeignete Lokomotive ermittelt werden sollte. Von den fünf teilnehmenden „echten“ Lokomotiven gewann The Rocket von Robert Stephenson das Rennen, die auf der 50 km langen Strecke eine Höchstgeschwindigkeit von 48 km/h erreichte und - das war das Entscheidende - als einzige das Rennen ohne Ausfall überstand. Die gleichfalls im Wettbewerb befindliche „Sans Pareil“ von Timothy Hackworth hatte Zylinder, die in der Werkstatt von Robert Stephenson gegossen waren, und von denen einer kurz nach dem Start zum Rennen explodierte - ein damals eher „regulärer“ Ausfall. Am 15. September 1830 wurde die Bahn zwischen Liverpool und Manchester eröffnet, wobei sowohl die siegreiche „Rocket“ als auch die „Sans Pareil“ in den Betrieb übernommen wurden.
In den USA führte Oberst John Stevens 1826 eine dampfbetriebene Lokomobile auf einer ringförmigen Fahrspur in Hoboken, New Jersey, USA vor. 1830 baute Peter Cooper mit der Tom Thumb die erste Dampflokomotive in Amerika für eine öffentliche Eisenbahn, und mit der DeWitt Clinton nahm am 24. September 1831 die erste fahrplanmäßige US-Lokomotive zwischen Albany (New York) und Schenectady mit rund 50 km/h ihren Dienst auf. Nicht unerwähnt sollte auch die in England hergestellte und nach Amerika gelieferte John Bull (Lokomotive) bleiben. Auch sie wurde 1831 in Dienst gestellt, 1866 ausgemustert und zuletzt 1981, mittlerweile 150 Jahre alt, nochmals unter Dampf genommen. Sie ist eine der letzten original überlieferten Maschinen der Dampflokfrühzeit.
Die erste dampfbetriebene Bahnlinie auf dem europäischen Kontinent wurde am 5. Mai 1835 zwischen Brüssel und Mecheln in Belgien eröffnet.
In Deutschland fuhr als erste Dampflokomotive im Juni 1816 eine Maschine Blenkinsop'scher Bauart, die von Johann Friedrich Krigar in der Königlichen Eisengießerei zu Berlin gebaut wurde, auf einem Rundkurs im Hof der Fabrik. Es handelte sich um die erste auf dem europäischen Festland gebaute Lokomotive und um den ersten dampfgeführten Personenverkehr, da Schaulustige gegen Entgelt in angehängten Wagen mitfahren konnten. Am 7. Dezember 1835 fuhr erstmalig zwischen Nürnberg und Fürth auf der Bayerischen Ludwigsbahn die Lokomotive Der Adler. Sie war bereits die 118. Maschine aus der Lokomotivenfabrik Robert Stephensons und stand mit der Typbezeichnung „Patentee“ unter Patentschutz.
In Österreich fuhr 1837 die erste Dampfeisenbahn auf der Kaiser-Ferdinand-Nord-Bahn zwischen Wien-Floridsdorf und Deutsch-Wagram. Die dienstälteste Dampflokomotive der Welt fährt ebenfalls in Österreich. Die GKB 671 aus dem Jahre 1860 wurde nie außer Dienst gestellt und wird immer noch für Sonderfahrten verwendet.
1838 entstand die dritte in Deutschland gebaute Dampflokomotive Saxonia bei der Maschinenbaufirma Übigau bei Dresden, gebaut von Prof. Johann Andreas Schubert. 1848 war die erste von den Henschel-Werken in Kassel produzierte Lokomotive, der Drache, ausgeliefert worden.
Die erste Eisenbahnstrecke über Schweizer Landesgebiet war die 1844 eröffnete Strecke Straßburg - Basel. Drei Jahre später, 1847, wurde als erste Schweizer Eisenbahnstrecke die Spanisch Brötli Bahn von Zürich nach Baden eröffnet.
Weitere Entwicklungsschritte
Erste Versuche, Erfolge und Irrwege
Die damals trotz der Pionierleistungen der Maschinenbauer vielfach immer noch unverstandenen Zusammenhänge zwischen Mechanik, Thermodynamik und Kraftübertragung führten bei Verbesserungsversuchen zu Konstruktionen, die oft eine bestimmte Eigenschaft verstärkten, dabei aber den Gesamtzusammenhang von Wärmeerzeugung, Kesselleistung, Radanordnung und Gewichtsverteilung aus dem Blick verloren.
Der folgende Überblick beschäftigt sich mehr mit den Entwicklungen, die zur letztlich erfolgreich verbreiteten Standardbauweise führten. Die erheblich davon abweichenden Konstruktionen sind in Dampflokomotive (Bauart) aufgeführt.
Die erste Maschine von Trevithick hatte zwei Radsätze, die beide von einem riesigen Zahnrad angetrieben wurden. Nach dem deutschen Achsfolge-Bezeichnungs- bzw. Zählsystem war dies eine „B“- Lokomotive. Auch Stephensons spätere „Locomotion“ war mit zwei angetriebenen Achsen eine „B“-Type, im Gegensatz zu Trevithick baute Stephenson jedoch Kurbelzapfen an die Räder, die mit Kuppelstangen verbunden wurden. Dies wurde dann der verbreitetste Mehrfach-Radsatz-Antrieb, der später auch bei den ersten Elektro- und Diesellokomotiven übernommen wurde.
Stephensons 1829 gebaute „Rocket“ war demgegenüber teilweise ein Entwicklungs-Rückschritt, da sie nur eine angetriebene Achse vorn und dahinter einen kleineren Laufradsatz hatte (Achsfolge A1). Dies ermöglichte zwar ohne große konstruktive Schwierigkeiten größere Treibräder für höhere Geschwindigkeiten, minderte aber das für die Zugkraft wichtige Reibungsgewicht des Antriebs. Die gleiche konstruktive Unzulänglichkeit wurde 15 Jahre später mit Lokomotiven des Crampton-Typs sogar noch weitergetrieben. Die „Cramptons“ hatten noch größere Treibräder, die aus Platzgründen hinter dem tief liegenden schweren Kessel unter dem Führerstand angebracht waren. Die tiefe Kessellage sollte einen ruhigen Lauf bewirken. Damit hatten die Cramptons Schwierigkeiten beim Anfahren, denn die gering belasteten Treibräder drehten leicht durch (so genanntes Schleudern). Hatten die Cramptons ihren Zug erst einmal in Fahrt gebracht, konnten sie mit ihrem langen und damit leistungsfähigen Kessel, der auf bis zu drei voranlaufenden Achsen lagerte, beträchtliche Geschwindigkeiten entwickeln.
Timothy Hackworth begriff schon früher den Zusammenhang zwischen Reibungsgewicht und Zugkraft und baute bereits 1827 die „Royal George“ als Dreikuppler (Achsfolge C). Güterzuglokomotiven mit drei gekuppelten Radsätzen blieben jahrzehntelang Standard.
Die 1835 von Robert Stephenson nach Deutschland gelieferte Maschine, die als „Der Adler“ die erste auf deutschen Gleisen war, hatte mit je einem Laufradsatz vor und hinter dem mittig unter dem Kessel angebrachten Treibradsatz (Achsfolge 1A1) nur bescheidene Zugkraft und Höchstgeschwindigkeit. Diese einfache Konstruktion erwies sich vermutlich als zuverlässig im Betrieb, denn Dampflokomotiven mit nur einem Treibradsatz wurden für verschiedene deutsche Länderbahnen noch bis in die späten 1860er Jahre gebaut; so blieb vor allem die bayerische Staatsbahn der „1A1“ lange Zeit treu.
Amerika übernimmt von England die Pionierrolle
Eine Spezialität US-amerikanischer Bahnen waren die langen und mit geringer Sorgfalt zusammengelaschten Schienenwege, die zu einem unruhigen Lauf der Lokomotiven mit der von England übernommenen Bauweise des starren vierrädrigen Fahrgestells führten. Um diesen Schwierigkeiten zu begegnen, wurde bereits 1836 von Henry Roe Campbell eine Lokomotive mit der Achsfolge 2’B (amerikanische Bezeichnungsweise 4-4-0), also mit zwei Laufradsätzen vorn und zwei gekuppelten Treibradsätzen dahinter, entwickelt und patentiert. Bei Gleis-Unebenheiten gewährleistete diese Bauweise, dass die Treibräder einen besseren Kontakt mit den Schienen hatten. Bis 1884 waren sechzig Prozent aller US-Dampflokomotiven „4-4-0“er und wurden als „American Standard“ oder kurz „American“ bekannt. Als die Zuggewichte größer und die Geschwindigkeiten höher wurden, wurde die bewährte „American“ einfach in allen Bauteilen vergrößert und verstärkt, um den erhöhten Anforderungen zu genügen.
Von der „New York Central-4-4-0“ Nummer 999 mit ihren 2,15 m hohen Treibrädern wird berichtet, dass sie am 10. Mai 1893 mit dem aus vier Wagen bestehenden „Empire State Express“ zwischen Batavia und Buffalo, New York, eine Geschwindigkeit von 112,5 mph (= 181 km/h) erreichte. Bis zum Ende des Jahrhunderts wurden Variationen der „American“ in den USA etwa 25.000 mal gebaut. In Europa wurde diese Bauart mit mehr oder weniger langem Zeitverzug übernommen, meist zunächst als „1B“-Type mit einem Laufradsatz vorn und zwei gekuppelten Treibradsätzen.
Das Ende der „American“-Ära kam in den 1880er Jahren mit der zunehmenden Verbreitung der 1875 von George Westinghouse erfundenen Luftdruckbremse. Anstelle der handgebremsten Züge ermöglichten diese leistungsfähigen Bremsen längere und schwerere Züge, für die es nicht mehr ausreichte, die „4-4-0“ einfach größer zu bauen. Dies führte zu Lokomotiven mit drei- und vierfach hintereinander gekuppelten Treibradsätzen.
In Europa wurde anfangs für schnellere Lokomotiven bevorzugt eine tiefe und stabile Kessellage angestrebt, die jedoch ungünstig war für die Anordnung mehrerer großer Treibradsätze. Wesentliche Impulse zur Überwindung dieser Angst vor dem hohen Schwerpunkt kamen aus den USA. So entstanden bald auch hier neue Lokomotiven mit immer höherer Kessellage, die den Einsatz von mehreren Kuppelradsätzen erlaubten.
Ein weiterer Entwicklungsschritt war die Einführung des Verbundmaschinen-Prinzips im Dampflokomotivbau, nachdem dieses sich bereits auf Dampfschiffen bewährt hatte. Hierbei wird das Ausdehnungsbestreben des Dampfes nach dem Auslass aus einer ersten Arbeitsstufe noch einmal in einer zweiten Stufe in einem Niederdruckzylinder genutzt. Der Schweizer Anatole Mallet meldete hierzu 1874 ein Patent für die Verwendung auf Lokomotiven an.
Das Prinzip wurde zunächst auf Lokomotiven mit zwei separaten Fahr- und Triebwerken („Malletloks“) durch Hintereinanderschaltung der Zylinderpaare genutzt. Später wurde das Verbundprinzip auch auf Lokomotiven mit nur einem Fahrwerk angewendet, zunächst bei Lokomotiven mit zwei Zylindern. Zweizylinder-Verbundloks benötigten eine besondere Anfahrvorrichtung, um bei Totpunktlage eines der Zylinder anfahren zu können. Danach ging man besonders im Schnellzugdienst zu Vierzylinder-Verbundloks über. Bei diesen Lokomotiven war die erste Treibradachse als Kurbelwelle ausgebildet und wurde von zwei innerhalb des Rahmens liegenden Hochdruckzylindern getrieben. Außen am Rahmen lagen die größeren Niederdruckzylinder, die in der üblichen Weise auf die Kurbelzapfen des zweiten Treibradsatzes arbeiteten. Der meist vorhandene dritte Treibradsatz war mit den beiden vorderen durch die üblichen außen liegenden Kuppelstangen verbunden.
Mit größeren Lokomotiven ergab sich das Problem der Kurvenläufigkeit von Starrrahmenlokomotiven. Im Jahre 1884 ließ sich wiederum Anatole Mallet die heute unter seinem Namen bekannte kurvengängige Lokomotivbauart mit zwei Triebwerken, von denen eines drehbar oder seitlich verschiebbar gelagert ist, patentieren. In der Folge wurden bei vielen deutschen Länderbahnen gegen Ende des 19. Jahrhunderts insgesamt etwa 150 Malletloks gebaut. Das Malletlok-Prinzip wurde jedoch erst in den USA zu seiner höchsten Blüte geführt. Statt zumeist kleiner Nebenbahn-Lokomotiven wie in Europa wurden hier mit Hilfe der Mallet-Konstruktion die wahren Dampflok-Giganten – jedoch meist ohne die Verbund-Schaltung der Triebwerke – gebaut.
Wenn die Anforderungen an die Kurvengängigkeit nicht so hoch waren, wurden für die bessere Kurvengängigkeit die Spurkränze der äußeren Treibradsätze in schwächerer Form ausgeführt, so dass Gleiskurven befahren werden konnten, ohne dass die Lok aus den Schienen sprang. Nach Voruntersuchungen von Helmholtz wandte der Österreicher Karl Gölsdorf bei großen Starrrahmenlokomotiven auch eine Verschiebung der Treibachsen an. Damit war das Problem der Kurvenläufigkeit großer leistungsfähiger Starrrahmenlokomotiven gelöst.
Die letzte fehlende Komponente für die moderne Dampflok war die Entwicklung des Überhitzers, der es ermöglichte, die Dampftemperatur soweit zu erhöhen, dass während der Expansion im Zylinder keine Verluste durch Kondensierung entstanden. Hier tat der deutsche Ingenieur und Maschinenbauer Wilhelm Schmidt (Heißdampf-Schmidt) den entscheidenden Schritt mit der Erfindung des Überhitzers, mit dem sich der Heißdampf mit Temperaturen von 350 °C betriebsmäßig im Dampfmaschinenkessel herstellen ließ. Damit konnte der thermische Wirkungsgrad der Dampfmaschine um die Hälfte verbessert werden. Damit wurden 1897 für die preußische Staatsbahnen die ersten zwei Lokomotiven (eine S 3 und eine P 4) mit Flammrohrüberhitzer geliefert.
Höhepunkte der Entwicklung
Eine weitere markante und erfolgreiche Entwicklung war die „Pacific”-Dampfloktype mit der Achsfolge 2’C1’ bzw. der amerikanischen Bezeichnung 4-6-2. Sie entstand wiederum in den USA und wurde besonders verbreitet, als die Zuggewichte sich um 1910 durch stählerne Waggons erhöhten und von den 4-4-0- und 4-4-2-Typen nicht mehr bewältigt werden konnten.
Nachdem 1901 von Baldwin in den USA erstmals eine Lokomotive mit der Achsfolge 2’C1’ nach Neuseeland geliefert worden war, wurde 1902 von Brooks, einer späteren Tochter der ALCO eine 4-6-2-Type an die Missouri Pacific-Eisenbahn ausgeliefert, von der fortan der Kenname „Pacific“ herrührte. Begünstigend für die Entwicklung und Verbreitung der „Pacific“ war auch, dass gleichzeitig die Anwendung des Heißdampf-Überhitzer-Prinzips einsetzte, was mit dieser Type zusammen mit der größeren Feuerbüchse und dem längeren Kessel zu einer sprunghaften Leistungssteigerung führte, die lange Zeit weitere Entwicklungen vor allem bei Schnellzuglokomotiven erübrigte. Es wird gesagt, dass von Lokomotiven mit der „Pacific“-Achsfolge alleine in Nordamerika mehr als 10.000 Stück gebaut wurden.
In den späten 1930er und den 1940er Jahren werden technische Höhepunkte der Dampftraktion erreicht mit sowohl den stärksten und größten und den schnellsten je gebauten Maschinen, den riesigen US-amerikanischen Mallet-Lokomotiven und Schnellfahr-Dampflokomotiven wie etwa der deutschen Baureihe 05 oder der englischen „A4“, die bei Versuchsfahrten jeweils knapp über 200 km/h erreichten.
Moderne US-amerikanische Güterzugdampfloks hatten Dauerleistungen von bis zu 8.000 PS (6.000 kW, C&O-Baureihe H-8, PRR-Baureihe Q-2), Schnellzugloks kamen auf bis zu 6.700 PS (5.000 kW, NYC-Baureihe S-1b, „Niagara“). Sie waren extrem robust gebaut, da bei den hohen Zuglasten (fahrplanmäßig 10.000 bis 15.500 Tonnen im schweren Güterzugdienst, 1.000 bis 1.800 Tonnen im schweren Schnellzugdienst) der „flat out“ („volle Pulle“) – Betrieb an der Tagesordnung war. Da eine Schnellzuglok bis zu 2.840 km vor ihrem Zug blieb (AT & SF - Baureihe 2900, auf der Strecke Kansas City – Amarillo – Los Angeles), waren Zuverlässigkeit und leichte Wartbarkeit oberstes Gebot.
Die meistgebauten Lokomotiven in Deutschland waren die „Baureihe 55.25-58“ und die „Kriegslokomotiven“ der deutschen Baureihe 52. Die Baureihe 55.25-58, preußische G8.1 wurde in 4.995 Exemplaren gebaut und war damit die meistgebaute Länderbahndampflok, gefolgt von der Personenzuglok „P 8“ mit der Achsfolge 2'C , die seit 1906 von der Berliner Maschinenbau AG und den Linke-Hofmann Werken in Breslau in etwa 3.800 Exemplaren gebaut wurde, wovon etwa 500 Stück ins Ausland geliefert wurden. Die meisten dieser Lokomotiven wurden in den Jahren 1919 bis 1924 fertiggestellt.
Die deutsche Baureihe 52 war eine erheblich vereinfachte Version der Güterzuglok-Baureihe 50 mit der Achsfolge 1'E, von der zwischen 1942 und 1945 etwa 6.500 Stück für den erhöhten Transportbedarf im Zweiten Weltkrieg gebaut wurden. Die Baureihen 50 und 52 zusammen erreichten eine Stückzahl von etwa 10.000. Neben den Preußischen Staatseisenbahnen waren es nur noch die Eisenbahnen der Sowjetunion, die verschiedene Lokbaureihen in Stückzahlen von über 3.000 bauen ließen.
In der Schweiz wurde mit der C 5/6 2978 ungewöhnlich früh, nämlich im Jahr 1917, die letzte Dampflokomotive der SBB-Geschichte ausgeliefert. Die fortschreitende Elektrifizierung verhalf den E-Loks zum Siegeszug.
Geschwindigkeits-Entwicklung
Jahr Land / Bahn Lok Bezeichnung Geschwindigkeit
in km/h1769 Frankreich / Paris Dampfwagen von Cugnot 3,5 - 4 1825 England / Stockton and Darlington Railway „Locomotion“ von George Stephenson 24 1830 England / Liverpool-Manchester „The Rocket“ von Robert Stephenson 48 1835 England / Liverpool-Manchester Lokomotive von Sharp & Roberts über 100 1890 Frankreich „Crampton No. 604“ 144 1893 USA / New York Central Railroad No. 999 181 1901 Österreich-Ungarn / Teststrecke bei Wien Lokomotive von Praga 140 1907 Deutschland / K.Bay.Sts.B. S 2/6 154 1935 Frankreich / NORD 3.1174 174 1935 USA / Chicago, Milwaukee, St. Paul and Pacific Railroad Klasse A Nr. 1 181 1936 Deutschland / Deutsche Reichsbahn 05 002 200,4 1938 England / LNER Klasse A4 Nr. 4468 „Mallard“ 201,2 Vor allem aus den USA, wo die gegenüber Europa um ca. 50 % höheren zulässigen Achslasten den Bau leistungsfähiger und entsprechend robuster Lokomotiven begünstigten, sind vereinzelt Geschwindigkeiten bekannt geworden, die über die in der Tabelle genannten Rekorde hinausgingen, jedoch mangels einer offiziellen Bestätigung nicht anerkannt wurden.
Die wahrscheinlich mit Abstand schnellste Dampflokomotive überhaupt war die Klasse S1 No. 6100 der Pennsylvania Railroad, eine 3'BB3'-Duplex-Lokomotive, die im Jahre 1946 227,2 km/h (141,2 mph) erreicht haben soll. Während sich Fachleute einig darüber sind, dass die Lok die behauptete Geschwindigkeit durchaus erreichen konnte, so gibt es bis heute keinen Beleg für eine solche Fahrt. Etliche angegebene Details wie das Datum oder die Vorgehensweise der Kontrollbehörde ICC, lassen diesen Bericht unglaubwürdig erscheinen. Ähnliche Berichte, allerdings aus amerikanischen Quellen, sprechen von derartigen Geschwindigkeiten im Zusammenhang mit den T1 Lokomotiven. Keine dieser Loks ist mit einem Messwagen ausgefahren worden.
Auch wenn eine Messung mit Stoppuhren (dabei wurde der Zeitabstand zwischen dem Passieren zweier Meilenpfosten gemessen) nicht sehr genau ist, erscheint diese Geschwindigkeit angesichts einer auf dem Prüfstand gemessenen Leistung der S1 von ca. 8.000 PS (6.000 kW) durchaus nicht unrealistisch. Das gleiche gilt für die der Klasse A der Chicago, Milwaukee, St. Paul & Pacific Railroad nachgesagten Geschwindigkeiten von bis zu 209 km/h, obwohl die mit einem Messwagen ermittelte Höchstgeschwindigkeit dieser modernsten und größten je gebauten Atlantic-Lokomotive (Achsfolge 2'B1') nur bei 181 km/h gelegen hat.
Andere inoffizielle Rekorde erscheinen dagegen weniger glaubhaft. So soll im Jahr 1901 eine 2'C-Lokomotive der Savannah, Florida & Western Railway mit einem Treibraddurchmesser von nur 1.854 mm eine Geschwindigkeit von 120 mph (193 km/h) erreicht haben. Auch die 127,1 mph (205 km/h), die eine Atlantic-Lokomotive der PRR-Klasse E2 im Jahr 1905 erreicht haben soll, erscheinen unglaubwürdig. Dennoch wurde dieser Wert von der PRR veröffentlicht und gilt in den USA manchmal als höchste Geschwindigkeit, die je eine Dampflokomotive erreicht hat.
Ende der Dampflok-Ära in Europa und den USA
In den USA wurden seit den 1940er Jahren zunehmend Diesellokomotiven eingesetzt, die sich durch Kuppeln mehrerer Einheiten flexibler an wechselnde Anforderungen von Zuggröße und Streckenverlauf anpassen ließen. Zudem waren die Diesellokomotiven schneller startbereit, wo bei Dampflokomotiven stundenlanges Vorheizen erforderlich war. So zeichnete sich in den USA schon in der Zeit zwischen den Weltkriegen mit den letzten Dampflokomotivlieferungen für manche Eisenbahngesellschaft und mit dem Niedergang der größten Dampflokomotiv-Produzenten Baldwin, LIMA und ALCO in den 1950er und 1960er Jahren das Ende der Dampflok-Ära ab.
Nachdem in Deutschland die Dampflokomotiven vor 1939 bereits auf dem Rückzug waren und durch moderne Diesel- und besonders Elektrolokomotiven abgelöst werden sollten, kam ihnen im völlig zerstörten Nachkriegsdeutschland wieder eine höhere Bedeutung zu. Die vor und während des Krieges aufgebauten Streckenelekrifizierungen waren weitgehend unbrauchbar, was einen flächendeckenden Einsatz von E-Loks unmöglich machte.
Im mittleren Europa war die Diesellokomotive keine so große Konkurrenz für die Dampflokomotive wie in den USA. Hier waren jedoch in den Alpenländern Österreich, der Schweiz sowie auch im deutschen Bayern die Dampflokomotiven schon in den 1960er Jahren weitgehend von den Elektrolokomotiven verdrängt worden. Für Elektrolokomotiven boten die Alpenländer mit ihrer Elektrizitätserzeugung aus Wasserkraftwerken günstigere Einsatzbedingungen, und umgekehrt boten Elektroloks durch die Überlastbarkeit ihrer Motoren Vorteile auf steigungsreichen Strecken. Mit zunehmender Elektrifizierung der Flachlandstrecken wurde auch in Mitteleuropa die Dampflok immer weniger eingesetzt.
Die Sowjetunion verkündete 1956 völlig überraschend, den Dampflokomotivbau einzustellen. Begründet wurde dies mit der problematischen Wasserversorgung in bestimmten Regionen sowie mit dem Vorhandensein eigener Ölvorkommen. Während der Dampfbetrieb offiziell in den 1970er Jahren eingestellt wurde, wurden tausende Dampflokomotiven als strategische Reserve konserviert abgestellt. Aufgrund von Problemen bei der Energieversorgung wurde der Dampfbetrieb bis etwa 1999 regional immer wieder aufgenommen.
Als erste europäische Staatsbahngesellschaft beendeten die Niederländischen Staatsbahnen den Dampfbetrieb im Jahre 1958.
1967 fuhr der letzte offizielle SBB-Dampfzug in der Schweiz. Einzig die Brienz-Rothorn-Bahn setzt heute weiterhin auf Dampflokomotiven und beschafft sogar neu konstruierte.
Die Deutsche Bundesbahn in Westdeutschland stellte 1977 den Dampflokomotiv-Betrieb ein; letzte Einsatzbetriebswerke (BW) waren: BW Emden und BW Rheine, BW Emden mit den tatsächlich letzten Fahrten am 26. Oktober 1977 mit zwei Lokomotiven der Reihe 043, deren letzte, 043 903, um 16:04 Uhr abgestellt wurde. Bei der Deutschen Reichsbahn in der DDR endete ihr Einsatz auf Normalspur am 29. Oktober 1988 beim Bw Halberstadt mit einer Lok der Reihe 50.35. Bis Anfang der 90er Jahre gab es in Deutschland zudem noch Dampfloks bei einigen Werksbahnen, zuletzt beim Eschweiler Bergwerksverein in Alsdorf und Siersdorf, Dampfspeicherlokomotiven werden auf einigen wenigen Werksbahnen bis heute eingesetzt. Durch den Zusammenschluss von DB und DR übernahm die Deutsche Bahn AG noch einige schmalspurige Dampfloks der sächsischen und mecklenburgischen Schmalspurbahnen. Diese Bahnen mitsamt der Fahrzeuge wurden jedoch sukzessive bis 2004 an verschiedene örtliche Betreiber verkauft, wodurch im Bestand der DB nurmehr Museums-Dampflokomotiven verbleiben.
Bei den Österreichischen Bundesbahnen waren Dampflokomotiven regulär bis zum Jahr 2005 im Einsatz. Der Dampfbetrieb endete allerdings auf unkonventionelle Weise, nämlich durch den Verkauf der letzten Dampfstrecke - der Schafbergbahn - an die Salzburg AG.
Außerhalb Europas und der USA wurden die Dampflokomotiven noch länger betrieben und zumeist durch Diesellokomotiven ersetzt. Teilweise sind sie heute (2008) noch im Einsatz, wie z. B. auf den Staatsbahnsystemen Myanmar und Zimbabwe sowie auf Industrie- und Landwirtschaftsbahnen in Kuba, Indonesien, Serbien, Swasiland, Rumänien, Nordkorea und der Volksrepublik China.
Dampftraktion aktuell
Neubaudampflokomotiven
Während in den 1970er Jahren das Kapitel der Dampflokomotiven abgeschlossen schien, lieferte die Schweizer Maschinenfabrik SLM (Dampflokomotivfabrik heute DLM) 1992 drei neue leichtölgefeuerte Dampflokomotiven für Schmalspurbahnen aus. Die Fahrzeuge werden dort eingesetzt, wo Dampflokomotiven aufgrund der höheren Attraktivität für Touristen bei mit Diesellokomotiven vergleichbaren Betriebskosten deutlich höhere Einnahmen versprechen. 1996 konnten drei weitere Lokomotiven an die österreichische Schafbergbahn verkauft werden, seither sind keine Verkäufe mehr bekannt. Im Sommer 2004 verkaufte die Transports Montreux-Vevey-Riviera ihre 1992 gekaufte Lok mangels Rentabilität an die Brienz-Rothorn-Bahn, welche bereits mehrere DLM-Maschinen besitzt. Ansonsten genießen die verbliebenen, nicht verschrotteten Dampflokomotiven oftmals einen Ehrenplatz als Denkmäler der Technikhistorie oder werden von Technik-Interessierten in der Freizeit betriebsbereit gehalten.
Zwanzig Jahre nach dem Ende des Dampflokneubaus in Deutschland - 1988 wurde eine letzte Serie von Dampfspeicherlokomotiven für Industriebetriebe der DDR in Meiningen gefertigt - entstehen im Jahr 2009 wieder zwei Neubauten von Dampfloks im Dampflokwerk Meiningen. Es handelt sich dabei um Nachbauten zweier ostdeutscher Schmalspurloktypen: Zum einen wird für die Bäderbahn Molli eine vierte Lokomotive der DRG-Baureihe 99.32 gebaut, zum anderen erhält der VSSB einen Nachbau einer sächsischen I K. Beide Lokomotiven sollen im Sommer 2009 fertiggestellt werden.
Plan- und Sonderverkehre im deutschsprachigen Raum
Einen planmäßigen Betrieb mit Dampflokomotiven gibt es im deutschsprachigen Raum noch bei folgenden Bahngesellschaften:
- Achenseebahn (Tirol)
- Chiemseebahn (Bayern)
- Fichtelbergbahn (Sachsen)
- Preßnitztalbahn (Sachsen)
- Dampfbahn Furka-Bergstrecke (Schweiz)
- Lößnitzgrundbahn (Sachsen)
- Harzer Schmalspurbahnen (Sachsen-Anhalt)
- Bäderbahn Molli (Mecklenburg-Vorpommern)
- Rügensche Kleinbahn (Mecklenburg-Vorpommern)
- Zittauer Schmalspurbahn (Sachsen)
- Schafbergbahn (Oberösterreich)
- Schneebergbahn (Niederösterreich)
- Weißeritztalbahn (Sachsen)
Auch die Deutsche Bahn, speziell die DB Regio AG, Verkehrsbetrieb Thüringen, setzt seit 1998 wieder saisonal planmäßige Dampfzüge ein. Die Dampfregionalexpressumläufe "Rodelblitz" und "Elstertal" verkehren an mehreren Wochenenden in Thüringen und in die benachbarte Tschechische Republik.
In Deutschland sind etwa 135 betriebsfähige normalspurige Dampflokomotiven erhalten. Viele weitere Exemplare finden sich nicht betriebsfähig in Museen oder als Denkmäler aufgestellt.
Die schnellste betriebsfähige Dampflokomotive der Welt, die 18 201 befindet sich im Eigentum der „Dampf Plus“ GmbH. Die Lokomotive wird derzeit sporadisch vor Sonderzügen eingesetzt.
Dampflokeinsatz im Ausland
In Europa werden auch in Polen Regelspur-Dampflokomotiven im Plandienst eingesetzt, nämlich vom Bahnbetriebswerk Wolsztyn (Wollstein). Zur Zeit stehen täglich drei Maschinen im Dienst. Aufgrund der großen Attraktivität für Touristen wird der Betrieb bis heute aufrechterhalten.
In einigen Nachfolgestaaten Jugoslawiens werden Dampflokomotiven noch innerbetrieblich auf Werkbahnen eingesetzt, in Bosnien-Herzegowina auch noch auf Schmalspur.
Bis jetzt (1/2006) haben sich auch in der Volksrepublik China noch Dampflokomotiven gehalten. Grund sind die günstige Kohle-Versorgung, die einfache Instandhaltung sowie die noch vorhandene Infrastruktur für die Dampflokomotiven. Zudem sind die vorhandenen Dampflokomotiven zumeist erst einige Jahre alt. Allerdings plant China die völlige Abschaffung der Dampftraktion teils aus Prestigegründen bis zum Olympiajahr 2008. Der letzte planmäßige Personenzug mit Dampftraktion auf einer Hauptstrecke in China fuhr am 10. Dezember 2005 auf der Ji - Tong - Linie.
Heute ist ein regulärer Betrieb von Dampflokomotiven außerhalb Europas aus China, Myanmar und Indien bekannt; Zimbabwe hat den Dampfbetrieb im Jahre 2005 wiederaufgenommen. In Kuba und Indonesien werden zur Zuckerrohrernte auf Werkbahnen noch Dampfloks eingesetzt. In Paraguay gibt es gegentlich noch Verschubdienst mit Dampf, in Argentinien verkehren mehrere Schmalspurbahnen (nach europäischem Verständnis eher Touristikbahnen) mit Dampf.
Heizlokomotive
Mehrere in Deutschland noch eingesetzte (Museums-)Lokomotiven haben nur überlebt, weil sie als sogenannte Heizlokomotive eingesetzt waren. Diese Lokomotiven waren normalerweise nicht mehr fahrbereit, sondern wurden als stationäre Heizanlagen für größere Gebäudekomplexe, z. B. Bahngebäude, Sowjet-Kasernen (DDR) usw. eingesetzt. Die gültigen Kesseluntersuchungen mussten natürlich vorhanden sein.
Rezeption in Kunst und Kultur
Filme
- Der Zug (1963) mit Burt Lancaster
- Das Stahltier (1934) mit Aribert Mog, Regie: Willy Zielke
- Der General (1926) mit Buster Keaton
- El último tren/Deutscher Titel „Der letzte Zug“, Spielfilm, Argentinien/Spanien/Uruguay 2002, Regie: Diego Arsuaga
- The Adventurers/Deutscher Titel „Die Playboys“, Spielfilm, USA/Kolumbien 1970, Regie: Lewis Gilbert
- The Great Locomotive Chase, Spielfilm, Produktion: Walt Disney, USA 1956
- The Titfield Thunderbolt/Deutscher Titel „Titfield-Express“ Regie Charles Crichton, Großbritannien 1952
- Kurt Pierson: Oldtimer im Film. In: Lok-Magazin. München 1970,40 (Februar), S. 69-73. ISSN 0458-1822
- La Bête Humaine mit Jean Gabin, 1938
Bildende Kunst
- Claude Monet: Ankunft eines Zuges im Gare Saint-Lazare Bild:Claude Monet 004.jpg, 1877
- Vilém Kreibich: im National Technical Museum in Prag, im Internet: 1, 2, 3
- Lyonel Feininger: Windspiel, Farblithografie 1906
- Wolf Vostell: La Tortuga
Musik
- Arthur Honegger: Pacific 231, sinfonischer Satz für Orchester, 1924
Lyrik
- Gerrit Engelke: Lokomotive
- Wallace Saunders: The Ballad of Casey Jones (englisch)
Siehe auch
- Dampfspeicherlokomotive
- Dampflokverbot
- Geschichte der Eisenbahn
- Liste in Deutschland vorhandener Dampflokomotiven
- Geschwindigkeitsweltrekorde für Schienenfahrzeuge
Literatur
- Rudolf Heym: Wie funktioniert sie eigentlich, die Dampflok? GeraMond, München 2004, ISBN 3765472557
- Dirk Endisch: So funktioniert die Dampflok. Transpress, Stuttgart 2003, ISBN 3613712210
- Siegfried Bufe: Abschied von der Dampflok. Eisenbahn-Kurier, Freiburg i. Brsg. 1978, 1985, ISBN 3882555009
- Erhard Born: 2 C 1. Franckh, Stuttgart 1965.
- Erhard Born, Herrmann Maey: Die Regel-Dampflokomotiven der deutschen Reichsbahn und der deutschen Bundesbahn. Verkehrswissenschaftl. Lehrmittelges, Frankfurt M 1953.
- Wolfgang Messerschmidt: Lokomotiven der Maschinenfabrik Esslingen 1841 bis 1966. Ein Kapitel internationalen Lokomotivbaues. A. Steiger, Solingen 1984, ISBN 3921564670
- Wolfgang Messerschmidt: Taschenbuch Deutsche Lokomotivfabriken. Ihre Geschichte, ihre Lokomotiven, ihre Konstrukteure. Kosmos, Stuttgart 1977, ISBN 3440044629
- Joe G. Collias: Big Boy und Co. Das Ende der Dampflok- Ära in den USA. Heel-Vlg., Königswinter 1995, ISBN 3893654313
- Arnold Haas: Dampflokomotiven in Nordamerika. USA und Kanada. Franckh, Stuttgart 1978, ISBN 3-440-04493-9
- George H. Drury: Guide to North American Steam Locomotives. History and development of steam power since 1900. Railroad reference series. no. 8. Kalmbach Books, Waukesha 1993, ³1999, ISBN 0-89024-206-2
- Leopold Niederstrasser: Leitfaden für den Dampflokomotivdienst. ISBN 3-921700-26-4
- Autorenkollektiv: Die Dampflokomotive. Transpress, Berlin 1965, 1993. ISBN 3-344-70791-4
- Adolph Giesl-Gieslingen: Anatomie der Dampflokomotive international. Slezak, Wien 2004, ISBN 3-85416-194-8
- K-E. Maedel, A. Gottwald: Deutsche Dampflokomotiven. Transpress, Berlin 1994, 1999. ISBN 3-344-70912-7
- C. Hamilton Ellis: Die Welt der Eisenbahn. Die Geschichte der Lokomotiven, Wagen und Züge aus aller Welt. Stuttgart: Franckh'sche Verlagshandlung, 1972. ISBN 3-440-03571-9 (abgesehen von einem kurzen Ausblick auf Loks mit Diesel-hydraulischem Antrieb ein Überblick zur Entwicklung der Dampfloks; wiss. Beratung durch Marie-Anne Asselberghs, Niederlande, Direktorin des Niederländischen Eisenbahnmuseums in Utrecht sowie weitere internationale Eisenbahnexperten aus Schweden, Italien, USA, Japan und Deutschland)
- Bundesbahndirektion Hannover: 1843-1983. 140 Jahre Eisenbahndirektion Hannover. Hannover o. J. (1983). Seite 67-71.
Weblinks
Wikimedia Foundation.